Performance of a Compression-Ignition Engine Fueled with Diesel/Biodiesel Blends

2015 ◽  
Vol 730 ◽  
pp. 283-286
Author(s):  
Rong Fu Zhu ◽  
Yun Long Wang ◽  
Hui Wang ◽  
Yuan Tao Sun

The performance of engine fueled with diesel/biodiesel blends was tested. It was indicated from the experimental results that the brake power, torque out and brake specific fuel consumption of engine fueled with diesel/biodiesel caused slight variations, while NOx emission increased significantly compared with engine fueled with diesel. In order to reduce NOx emission of engine fueled with pure biodiesel, retarding fuel delivery advance angle was used, and the NOx emission tests revealed that the NOx emission decreased significantly at different engine speeds.

2011 ◽  
Vol 110-116 ◽  
pp. 2234-2238
Author(s):  
A.R. Norwazan ◽  
A.K. Zulkiffli ◽  
M.S. Abd Rahim

Biodiesel is an alternative fuels for diesel engine with the blending process by chemically combination of vegetable or animal oil and diesel fuels. It is proved that the biodiesel can be used without any modification on the compression ignition (CI) engine. In this study, the cooking oil of namely carotene is used to produce the biodiesel blend fuels in various percentages. The biodiesel blend and diesel fuel are evaluated to analyze the engine performances in 4 cylinder inline CI engine. The characteristics of engine performances namely brake power output and brake specific fuel consumption are measured with various loads applied. The fuel properties of biodiesel blend are investigated namely density, dynamics viscosity and kinetic viscosity. The experimental results show that the performance of biodiesel B10 is better than it counterpart namely diesel in terms of brake power output and brake specific fuel consumption (BSFC).


2015 ◽  
Vol 730 ◽  
pp. 279-282
Author(s):  
Jie Zang ◽  
Rong Fu Zhu ◽  
De Sheng Zhang

The performance of engine fueled with biodiesel was tested. It was indicated from the experimental results that NOx emission of biodiesel reduced significantly with decreasing fuel delivery advance angle BTDC, while soot emission also reduced when the fuel delivery timing was retarded for 2°CA, and the starting position of heat release rate retarded with the delay of fuel delivery timing. It can be concluded that, retarding fuel delivery timing was an effective method to reduce the NOx emission of engine fueled with biodiesel, but led to reduce the brake power output slightly.


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


Author(s):  
Amir Ridhuan ◽  
Shahrul Azmir Osman ◽  
Mas Fawzi ◽  
Ahmad Jais Alimin ◽  
Saliza Azlina Osman

This introductory study comes up with an innovative idea of using Hydroxyl gas as a fuel performance enhancer to reduce the natural sources and the overuse of fossil fuel resulting in increased pollution levels. Many researchers have used HHO gas to analyze gasoline and diesel in internal combustion engines. The main challenges of using HHO gas in engines have been identified as system complexity, safety, cost, and electrolysis efficiency. This article focuses on different performance reports and the emission characteristics of a compression ignition engine. As opposed to general diesel, this study found that using HHO gas improved brake power and torque. In all cases, an increase in braking thermal efficiency can be observed. This was due to the presence of hydrogen in HHO gas with higher calorific value than fossil fuels. At the same time, the fuel consumption unit of the engine was reduced, and the combined impact of hydrogen and oxygen helped to achieve complete combustion and improved the combustion capacity of the fuel when HHO gas was injected. The addition of HHO gas also improved the Brake Power (BP), Brake Torque (BT), Brake Specific Fuel Consumption (BSFC), and thermal efficiency while simultaneously reducing CO and HC formation. The rise in CO2 emissions represented the completion of combustion. Therefore, the usage of HHO gas in the Compression Ignition (CI) engine improved the engine performance and exhaust emissions.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 74 ◽  
Author(s):  
Muhammad Usman ◽  
Muhammad Farooq ◽  
Muhammad Naqvi ◽  
Muhammad Wajid Saleem ◽  
Jafar Hussain ◽  
...  

The rising global warming concerns and explosive degradation of the environment requires the mainstream utilization of alternative fuels, such as hydroxy gas (HHO) which presents itself as a viable substitute for extracting the benefits of hydrogen. Therefore, an experimental study of the performance and emission characteristics of alternative fuels in contrast to conventional gasoline was undertaken. For experimentation, a spark ignition engine was run on a multitude of fuels comprising of gasoline, Liquefied petroleum gas (LPG) and hybrid blend of HHO with LPG. The engine was operated at 60% open throttle with engine speed ranging from 1600 rpm to 3400 rpm. Simultaneously, the corresponding performance parameters including brake specific fuel consumption, brake power and brake thermal efficiency were investigated. Emission levels of CO, CO2, HC and NOx were quantified in the specified speed range. To check the suitability of the acquired experimental data, it was subjected to a Weibull distribution fit. Enhanced performance efficiency and reduced emissions were observed with the combustion of the hybrid mixture of LPG with HHO in comparison to LPG: on average, brake power increased by 7% while the brake specific fuel consumption reduced by 15%. On the other hand, emissions relative to LPG decreased by 21%, 9% and 21.8% in cases of CO, CO2, and unburned hydrocarbons respectively. Incorporating alternative fuels would not only imply reduced dependency on conventional fuels but would also contribute to their sustainability for future generations. Simultaneously, the decrease in harmful environmental pollutants would help to mitigate and combat the threats of climate change.


2013 ◽  
Vol 315 ◽  
pp. 453-457 ◽  
Author(s):  
Mohd Faisal Hushim ◽  
Ahmad Jais Alimin ◽  
Hazlina Selamat ◽  
Mohd Taufiq Muslim

This paper presents outcomes of the usage of a developed prototype of PFI retrofit-kit for small 4-stroke gasoline engine. The developed PFI retrofit-kit produced good and high brake power and brake mean effective pressure compared to the carburetor system with over 50% improvement. Exhaust-out emissions such as carbon monoxide, carbon dioxide and hydrocarbon have been reduced in the range of 39%, 185%, and 57% respectively. However, brake specific fuel consumption was found to be higher (125%) as compared to carburetor system.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 4
Author(s):  
Hassan M Attar ◽  
Dawei Wu ◽  
Adam P Harvey

Preheated Schizochytrium sp. raw microalgae oil (MAO) was evaluated as a fuel in a single-cylinder four-stroke diesel engine to produce a comparative study of MAO and diesel oil (DO) critical parameters. In particular, brake power, brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), in-cylinder pressure (CP), exhaust gas temperature (EGT), both nitrogen oxides (NOx) and carbon monoxide (CO) emissions were investigated. Additionally, an engine durability test for longevity was undertaken over a 30-h period, using raw MAO as the fuel. The study demonstrated that the preheated MAO could be successfully used in a diesel engine smoothly. The use of MAO reduced the engine brake power by 26% and increased brake-specific fuel consumption by 20%. The most significant finding from this research study is that there was a significant reduction in NOx and CO emission by 42% and 60% when using raw MAO, respectively. Therefore, these findings demonstrate that algae oil is a highly credible fuel for use in diesel engines and offers a promising solution to diesel engine emissions.


Author(s):  
Sudarsono ◽  
Anak Agung Putu Susastriawan ◽  
I Gusti Badrawada ◽  
Hary Wibowo ◽  
Dwi Laras Indrajati

In order to utilize a raw biogas as a fuel of generator set (gen-set), it is important to figure out optimum operating parameter of the gen-set, i.e. compression ratio. The present work aims to investigate the effect of compression ratio on performance of 3 kW gen-set fuelled with raw biogas and to obtain optimum compression ratio for operation of the gen-set on raw biogas. The gen-set used in the present work is bi-fuel engine, i.e. fuelled with gasoline or LPG. The performance of the engine fuelled with raw biogas in terms of brake power, brake torque, brake specific fuel consumption, and thermal efficiency is evaluated at compression ratio of 7.5, 8.5, 9.5, and 10.5. The work is carried out under electrical load of 240, 420, and 600 Watt. The result indicates that compression ratio affects the rotational speed, brake power, brake torque, brake specific fuel consumption, and thermal efficiency of the gen-set. Optimum compression ratio for the gen-set fuelled with raw biogas is 9.5. At the optimum compression ratio, maximum brake power, brake torque, and thermal efficiency of are 450.37 W, 1.66 Nm, and 46.93%, respectively. Minimum brake specific fuel is 0.59 kg/kWh at the optimum compression ratio.


Sign in / Sign up

Export Citation Format

Share Document