The Accumulation Rules of Budate Burial Hill Hydrocarbon Reservoir of Suderte Oilfield in Hailar Basin

2015 ◽  
Vol 733 ◽  
pp. 140-143
Author(s):  
Jin Hang Cai

Metamorphic rock burial hill reservoir of Beier rift in Hailaer Basin, with large scale reservoir and high output has complex fault system. The fault through going direction roughly is NEE direction, and has wide fault section and lateral quickly changed fault displacement. Metamorphic rock reservoir can be divided into the vertical weathered fracture zone, crack and dissolved pores and caves development belt and tight zone. Accumulation is controlled by hydrocarbon ability of source rock, contacting relationship of source rock and reservoir, oil storage ability of reservoir, and vertical and lateral hydrocarbon migration ability of fault and unconformity surface. And formed top surface weathering crust accumulation pattern which the hydrocarbon migrated laterally along the unconformity surface, and interior reservoir pattern of crack broken zone accumulation which hydrocarbon migrated vertically along fault.

Author(s):  
Sh. Qiu ◽  
N. A. Kasyanova

Background. In terms of oil and gas, the territory of the Chezhen depression has been studied insufficiently compared to the neighbouring same-range depressions. These depressions complicate the first-order Jiyang depression, geographically coinciding with the largest Shengli hydrocarbon field. In recent years, much geological and geophysical information about the oil geologyof the Chezhen depression has been accumulated, which allows its prospecting oil and gas potential to be assessed.Aim. To reveal regular features of the geological structure and location of oil deposits in the Chezhen depression in order to support the prospecting and exploration work within the Chezhen block of the Shengli field.Materials and methods. A comprehensive analysis of literature data and collected materials was conducted. A historical and geodynamic study of the evolution of the studied area according to literature data was carried out, along with an analysis of the most recent geological and geophysical information and exploration data based on the materials of the “Shengli AKOO Sinopek” oil company. The analysis was based on the data from 52 drilling wells and the results of seismic surveys performed in the central part of the Chezhen depression.Results. Specific features of the block geological structure of the area under study were established, which formed under the repeated influence of large-scale horizontal tectonic movements occurring at different periods of geological history. The role of the most recent fault system in the modern spatial distribution of oil deposits was determined.Conclusions. Our studies demonstrate a great prospecting potential of the Chezhen depression territory, where the discovery of new industrial oil deposits can be expected.


2021 ◽  
Author(s):  
Paul D. Bons ◽  
Tamara de Riese ◽  
Enrique Gomez-Rivas ◽  
Isaac Naaman ◽  
Till Sachau

<p>Fluids can circulate in all levels of the crust, as veins, ore deposits and chemical alterations and isotopic shifts indicate. It is furthermore generally accepted that faults and fractures play a central role as preferred fluid conduits. Fluid flow is, however, not only passively reacting to the presence of faults and fractures, but actively play a role in their creation, (re-) activation and sealing by mineral precipitates. This means that the interaction between fluid flow and fracturing is a two-way process, which is further controlled by tectonic activity (stress field), fluid sources and fluxes, as well as the availability of alternative fluid conduits, such as matrix porosity. Here we explore the interaction between matrix permeability and dynamic fracturing on the spatial and temporal distribution of fluid flow for upward fluid fluxes. Envisaged fluid sources can be dehydration reactions, release of igneous fluids, or release of fluids due to decompression or heating.</p><p> </p><p>Our 2D numerical cellular automaton-type simulations span the whole range from steady matrix-flow to highly dynamical flow through hydrofractures. Hydrofractures are initiated when matrix flow is insufficient to maintain fluid pressures below the failure threshold. When required fluid fluxes are high and/or matrix porosity low, flow is dominated by hydrofractures and the system exhibits self-organised critical phenomena. The size of fractures achieves a power-law distribution, as failure events may sometimes trigger avalanche-like amalgamation of hydrofractures. By far most hydrofracture events only lead to local fluid flow pulses within the source area. Conductive fracture networks do not develop if hydrofractures seal relatively quickly, which can be expected in deeper crustal levels. Only the larger events span the whole system and actually drain fluid from the system. We present the 10 square km hydrothermal Hidden Valley Mega-Breccia on the Paralana Fault System in South Australia as a possible example of large-scale fluid expulsion events. Although field evidence suggests that the breccia formed over a period of at least 150 Myrs, actual cumulative fluid duration may rather have been in the order of days only. This example illustrates the extreme dynamics that crustal-scale fluid flow in hydrofractures can achieve.</p>


2019 ◽  
Vol 116 (52) ◽  
pp. 26367-26375 ◽  
Author(s):  
Xuhua Shi ◽  
Paul Tapponnier ◽  
Teng Wang ◽  
Shengji Wei ◽  
Yu Wang ◽  
...  

The 2016, moment magnitude (Mw) 7.8, Kaikoura earthquake generated the most complex surface ruptures ever observed. Although likely linked with kinematic changes in central New Zealand, the driving mechanisms of such complexity remain unclear. Here, we propose an interpretation accounting for the most puzzling aspects of the 2016 rupture. We examine the partitioning of plate motion and coseismic slip during the 2016 event in and around Kaikoura and the large-scale fault kinematics, volcanism, seismicity, and slab geometry in the broader Tonga–Kermadec region. We find that the plate motion partitioning near Kaikoura is comparable to the coseismic partitioning between strike-slip motion on the Kekerengu fault and subperpendicular thrusting along the offshore West–Hikurangi megathrust. Together with measured slip rates and paleoseismological results along the Hope, Kekerengu, and Wairarapa faults, this observation suggests that the West–Hikurangi thrust and Kekerengu faults bound the southernmost tip of the Tonga–Kermadec sliver plate. The narrow region, around Kaikoura, where the 3 fastest-slipping faults of New Zealand meet, thus hosts a fault–fault–trench (FFT) triple junction, which accounts for the particularly convoluted 2016 coseismic deformation. That triple junction appears to have migrated southward since the birth of the sliver plate (around 5 to 7 million years ago). This likely drove southward stepping of strike-slip shear within the Marlborough fault system and propagation of volcanism in the North Island. Hence, on a multimillennial time scale, the apparently distributed faulting across southern New Zealand may reflect classic plate-tectonic triple-junction migration rather than diffuse deformation of the continental lithosphere.


Author(s):  
Yoshihito Miyagishima ◽  
Tomoaki Watamura ◽  
Yuji Tasaka ◽  
Yuichi Murai

This study aims to clarify the self-organized structure of microbubble plume as a result of two-way interaction between microbubbles and a flow of the surrounding liquid medium. We observed a sequence on a development of microbubble plumes in a thin fluid layer. Here the microbubbles show accumulation pattern with a different wavenumber depending on the height in the vessel. Variation of spatial wavenumber in the developing process was determined from visualization images, and three areas were distinguished in this process; (1) the area of rising microbubbles with a large wavenumber in a horizontal direction without time dependence; (2) the area of forming a large-scale flow structure, called ‘microbubble plume’ here, which keeps the primary information, horizontal wavenumber of the bubble accumulation with a large wavenumber; (3) the area where the microbubble distribution takes a smaller wavenumber and makes vertical accumulation pattern inside the bubbly flow that is due to the mutual interaction between rising microbubbles and a flow induced by bubbles. To clarify these mutual interactions between liquid and gas phases, we visualized fluid motion of the liquid phase around the microbubble plumes by laser induced fluorescence, LIF. In this way, swaying motions on the tip of rising up bubble plume and liquid phase entrainment into the bubble plumes were visualized. We found the mechanisms for the creation of the self-organized distribution of microbubbles in bubbly flows and its temporal change as the result of the interaction between gas and liquid phase motions in bubbly flows.


2020 ◽  
Vol 267 ◽  
pp. 105477
Author(s):  
Bin Zhang ◽  
Hanxun Wang ◽  
Lei Wang ◽  
Gang Mei ◽  
Lei Shi ◽  
...  

2020 ◽  
Author(s):  
Meng Zhang ◽  
Zhiping Wu ◽  
Shiyong Yan

<p>Buried-hills, paleotopographic highs covered by younger sediments, become the focused area of exploration in China in pace with the reduction of hydrocarbon resources in the shallow strata. A number of buried-hill fields have been discovered in Tanhai area located in the northeast of Jiyang Depression within Bohai Bay Basin, which provides an excellent case study for better understanding the structural evolution and formation mechanism of buried-hills. High-quality 3-D seismic data calibrated by well data makes it possible to research deeply buried erosional remnants. In this study, 3-D visualization of key interfaces, seismic cross-sections, fault polygons maps and thickness isopach maps are shown to manifest structural characteristics of buried-hills. Balanced cross-sections and fault growth rates are exhibited to demonstrate the forming process of buried-hills. The initiation and development of buried-hills are under the control of fault system. According to strike variance, main faults are grouped into NW-, NNE- and near E-trending faults. NW-trending main faults directly dominate the whole mountain range, while NNE- and near E-trending main faults have an effect on dissecting mountain range and controlling the single hill. In addition, secondary faults with different nature complicate internal structure of buried-hills. During Late Triassic, NW-trending thrust faults formed in response to regional compressional stress field, preliminarily building the fundamental NW-trending structural framework. Until Late Jurassic-Early Cretaceous, rolling-back subduction of Pacific Plate and sinistral movement of Tan-Lu Fault Zone (TLFZ) integrally converted NW-trending thrust faults into normal faults. The footwall of NW-trending faults quickly rose and became a large-scale NW-trending mountain range. The intense movement of TLFZ simultaneously induced a series of secondary NNE-trending strike-slip faults, among which large-scale ones divided the mountain range into northern, middle and southern section. After entry into Cenozoic, especially Middle Eocene, the change of subduction direction of Pacific Plate induced the transition of regional stress field. Near E-trending basin-controlling faults developed and dissected previous tectonic framework. The middle section of mountain range was further separated into three different single hill. Subsequently, the mountain range was gradually submerged and buried by overlying sediments, due to regional thermal subsidence. Through multiphase structural evolution, the present-day geometry of buried-hills is eventually taken shape.</p>


2020 ◽  
Author(s):  
Pan Luo ◽  
Jianye Ren ◽  
Xi He ◽  
Chao Lei ◽  
Junjie Xu ◽  
...  

<p>Our study focuses on the Zhongjianna (ZJN) (Phu Kham) Basin, located at the western termination of the South China Sea (SCS) and separated from the Indochina continent by the N-S striking East Vietnam Boundary Fault Zone, which is a large scale strike-slip fault system. The sedimentary infill history of the ZJN basin records the complete evolution and interaction of the Indochina-SCS system and allows the tectonic and kinematic evolution of the basin to be understood.. The discovery of hyper-extended continental crust and mantle exhumation in this basin leads to the question of what is the relative role of large-scale strike-slip and orthogonal faulting in controlling crustal thinning in the ZJN basin.  </p><p>  Our preliminary results confirm the existence of hyperextended continental crust flooring the ZJN basin. Two different types of structures can be identified in this area: extension related deformation in the eastern part and strike-slip related deformation in the western part. The analysis of fault geometries and kinematics linked to timing and subsidence rates suggest that the N-S-orientated strike-slip structures dominated the continental shelf and slope area on the west side of the basin. In the basin, however, most faults strike NE-SW and are parallel to the mid-ocean ridge. Thus, it appears that the ZJN basin resulted from the partitioning between strike-slip and orthogonal extension.</p><p>In our presentation we show the results of our seismic interpretation, strain and subsidence analysis and discuss the interaction between strike-slip and orthogonal extension in setting up the hyper-extended ZJN basin and its implications for the large scale tectonic and geodynamic framework.</p>


2009 ◽  
Vol 4 (6) ◽  
pp. 375-376 ◽  
Author(s):  
Harry Yeh ◽  
Nobuo Shuto

The 2004 Indian Ocean Tsunami claimed more than 220,000 lives. It was a low-probability high-consequence event. A similar disaster could strike elsewhere, particularly in the Pacific but also in Caribbean, Atlantic, and Mediterranean regions. Unlike in seismic ground shaking, there is usually a short lead-time precedes tsunami attack: from a few minutes for a local source to several hours for a distant source. Because mega-tsunamis are rare and because forewarning of these events is possible, the primary mitigation tactic to date has been evacuation. Hence, most efforts have focused on the development of effective warning systems, inundation maps, and tsunami awareness. This strategy makes sense from the standpoint of saving human lives. However, it does not address the devastating damage to buildings and critical coastal infrastructure, such as major coastal bridges, oil and LNG storage facilities, power plants, and ports and harbors. Failure in critical infrastructure creates enormous economic setbacks and collateral damage. The accelerating construction of critical infrastructure in the coastal zone demands a better understanding of design methodology in building tsunamiresistant structures. In some coastal areas such as low-elevation coastal spits or plains, evacuating people to higher ground may be impractical because they have no time to reach safety. In these situations, the only feasible way to minimize human casualties is to evacuate people to the upper floors of tsunami-resistant buildings. Such buildings must be designed and constructed to survive strong seismic ground shaking and subsequent tsunami impacts. The primary causes of structural failure subject to tsunami attack can be categorized into three groups: 1) hydrodynamic force, 2) impact force by water-born objects, and 3) scour and foundation failure. Tsunami behaviors are quite distinct, however, from other coastal hazards such as storm waves; hence the effects cannot be inferred from common knowledge or intuition. Recent research has addressed tsunami forces acting on coastal structures to develop appropriate design guidelines, and mechanisms leading to tsunamigenerated scour and foundation failures. This special issue is a compilation of 14 papers addressing tsunami effects on buildings and infrastructure. The four main groupings begin with two papers on tsunami force acting on vertical walls. Arikawa experimentally investigates the structural performance of wooden and concrete walls using a large-scale laboratory tank in Japan. Also using a similar large-scale tsunami flume but in the US, Oshnack et al. study force reduction by small onshore seawalls in front of a vertical wall. The second grouping focuses on tsunami force on 3-D structures. Arnason et al. present a basic laboratory study on the hydrodynamics of bore impingement on a vertical column. Fujima et al. examine the two types of formulae for tsunami force evaluation: the one calculated from flow depth alone and the other based on the Euler number. Lukkunaprasit et al. demonstrate the validity of force computation recommended in a recently published design guideline (FEMA P646) by the US Federal Emergency Management Agency. The other two papers look into the specific types of structures: one is for light-frame wood buildings by van de Lindt et al, and the other is for oil storage tanks by Sakakiyama et al. The topic of debris impact force is the focus of the third grouping. Matsutomi summarizes his previous research on impact force by driftwoods, followed by the collision force of shipping containers by Yeom et al. Yim and Zhang numerically simulate tsunami impact on a vertical cylinder; this paper is included in this grouping because their numerical approach is similar to that of Yeom et al. As for the fourth grouping, Shuto presents field observations on foundation failures and scours, and Fujii et al. discuss the erosion processes of soil embankments. There are two more papers: those are the application of fragility analysis to tsunami damage assessment by Koshimura et al. and evaluation of an offshore cabled observatory by Matsumoto and Kaneda. The topics presented here are undoubtedly in progress, and many revisions and improvements are still needed in order to achieve better predictability for tsunami effects on buildings and infrastructure. We hope you find the papers in this issue intriguing and the information useful, and become further interested in this important natural hazard. Lastly, we wish to express our appreciation to the authors for their timely contributions, and to the reviewers for their diligent and time-consuming efforts.


2006 ◽  
Vol 324-325 ◽  
pp. 1031-1034
Author(s):  
Yang Du ◽  
Jian Feng Gao ◽  
Xin Sheng Jiang

The fuel-air mixture explosion incidents in the large-scale metal oil storage tank are frequent occurrence and rapidly extend because of the tank structure being fractured and damaged by the fuel-air mixture explosion. In this paper, the simulation experiment and numerical simulation has been carried out for the fuel-air mixture explosion in the large-scale metal storage tank. The shock waves characteristic of the explosive pressure has been studied and discussed. The fracture and damage effects caused by the shock waves characteristic to the tank structure has been analyzed and discussed too.


Sign in / Sign up

Export Citation Format

Share Document