An Efficient Ear Recognition Method from Two-Dimensional Images

2014 ◽  
Vol 1049-1050 ◽  
pp. 1531-1535
Author(s):  
Yu Jun Zhang ◽  
Mei Xiang ◽  
Ying Tian

An efficient ear recognition method by weighted wavelet transformation and Bi-Directional principal component analysis was proposed. First, each ear image was decomposed into four sub-images by wavelet transformation ,the four sub-images were low frequency image , vertical detail image ,horizontal detail image and high frequency image .Then the low frequency image was decomposed into four sub-images, the four-images were weighted by different coefficients, then ,the four sub-images were reconstructed into a image .On this basis ,the feature was extraction by the BDPCA method ,and then we use the k-Nearest Neighbor Classification to recognition .Experimental results show that the method have high recognition rate and shorted training time.

2012 ◽  
Vol 503-504 ◽  
pp. 1601-1604 ◽  
Author(s):  
Jing Ming Ning ◽  
Sheng Peng Wang ◽  
Zheng Zhu Zhang ◽  
Xiao Chun Wan

Near-infrared (NIR) spectroscopy, combined with pattern recognition, was applied in this study for the rapid identification of Black tea from different origins.The K-Nearest Neighbor model recognition method was used for the establishment of a tea origin recognition model, which involved optimization of the principal component factors (PCs) and the identification rate using a cross-validation method. The experimental results showed that, after standard normal variant spectral preprocessing, an optimized model was obtained when the PCs were equal to three, with the cross-validation recognition rate and the predicted recognition rate reaching 98.1% and 93.3%, respectively.


Author(s):  
Zhu Siyu ◽  
He Chongnan ◽  
Song Mingjuan ◽  
Li Linna

In response to the frequent counterfeiting of Wuchang rice in the market, an effective method to identify brand rice is proposed. Taking the near-infrared spectroscopy data of a total of 373 grains of rice from the four origins (Wuchang, Shangzhi, Yanshou, and Fangzheng) as the observations, kernel principal component analysis(KPCA) was employed to reduce the dimensionality, and Fisher discriminant analysis(FDA) and k-nearest neighbor algorithm (KNN) were used to identify brand rice respectively. The effects of the two recognition methods are very good, and that of KNN is relatively better. Howerver the shortcomings of KNN are obvious. For instance, it has only one test dimension and its test of samples is not delicate enough. In order to further improve the recognition accuracy, fuzzy k-nearest neighbor set is defined and fuzzy probability theory is employed to get a new recognition method –Two-Parameter KNN discrimination method. Compared with KNN algorithm, this method increases the examination dimension. It not only examines the proportion of the number of samples in each pattern class in the k-nearest neighbor set, but also examines the degree of similarity between the center of each pattern class and the sample to be identified. Therefore, the recognition process is more delicate and the recognition accuracy is higher. In the identification of brand rice, the discriminant accuracy of Two-Parameter KNN algorithm is significantly higher than that of FDA and that of KNN algorithm.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


2020 ◽  
Vol 8 (5) ◽  
pp. 2522-2527

In this paper, we design method for recognition of fingerprint and IRIS using feature level fusion and decision level fusion in Children multimodal biometric system. Initially, Histogram of Gradients (HOG), Gabour and Maximum filter response are extracted from both the domains of fingerprint and IRIS and considered for identification accuracy. The combination of feature vector of all the possible features is recommended by biometrics traits of fusion. For fusion vector the Principal Component Analysis (PCA) is used to select features. The reduced features are fed into fusion classifier of K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Navie Bayes(NB). For children multimodal biometric system the suitable combination of features and fusion classifiers is identified. The experimentation conducted on children’s fingerprint and IRIS database and results reveal that fusion combination outperforms individual. In addition the proposed model advances the unimodal biometrics system.


Author(s):  
Amal A. Moustafa ◽  
Ahmed Elnakib ◽  
Nihal F. F. Areed

This paper presents a methodology for Age-Invariant Face Recognition (AIFR), based on the optimization of deep learning features. The proposed method extracts deep learning features using transfer deep learning, extracted from the unprocessed face images. To optimize the extracted features, a Genetic Algorithm (GA) procedure is designed in order to select the most relevant features to the problem of identifying a person based on his/her facial images over different ages. For classification, K-Nearest Neighbor (KNN) classifiers with different distance metrics are investigated, i.e., Correlation, Euclidian, Cosine, and Manhattan distance metrics. Experimental results using a Manhattan distance KNN classifier achieves the best Rank-1 recognition rate of 86.2% and 96% on the standard FGNET and MORPH datasets, respectively. Compared to the state-of-the-art methods, our proposed method needs no preprocessing stages. In addition, the experiments show its privilege over other related methods.


2020 ◽  
Vol 2 (2) ◽  
pp. 29-38
Author(s):  
Abdur Rohman Harits Martawireja ◽  
Hilman Mujahid Purnama ◽  
Atika Nur Rahmawati

Pengenalan wajah manusia (face recognition) merupakan salah satu bidang penelitian yang penting dan belakangan ini banyak aplikasi yang menerapkannya, baik di bidang komersil ataupun di bidang penegakan hukum. Pengenalan wajah merupakan sebuah sistem yang berfungsikan untuk mengidentifikasi berdasarkan ciri-ciri dari wajah seseorang berbasis biometrik yang memiliki keakuratan tinggi. Pengenalan wajah dapat diterapkan pada sistem keamanan. Banyak metode yang dapat digunakan dalam aplikasi pengenalan wajah untuk keamanan sistem, namun pada artikel ini akan membahas tentang dua metode yaitu Two Dimensial Principal Component Analysis dan Kernel Fisher Discriminant Analysis dengan metode klasifikasi menggunakan K-Nearest Neigbor. Kedua metode ini diuji menggunakan metode cross validation. Hasil dari penelitian terdahulu terbukti bahwa sistem pengenalan wajah metode Two Dimensial Principal Component Analysis dengan 5-folds cross validation menghasilkan akurasi sebesar 88,73%, sedangkan dengan 2-folds validation akurasi yang dihasilkan sebesar 89,25%. Dan pengujian metode Kernel Fisher Discriminant dengan 2-folds cross validation menghasilkan akurasi rata rata sebesar 83,10%.


2014 ◽  
Vol 989-994 ◽  
pp. 4187-4190 ◽  
Author(s):  
Lin Zhang

An adaptive gender recognition method is proposed in this paper. At first, do multiwavlet transform to face image and get its low frequency information, then do feature extraction to the low frequency information using compressive sensing (CS), use extreme learning machine (ELM) to achieve gender recognition finally. In the process of feature extraction, we use genetic algorithm (GA) to get the number of measurements of CS in order to gain the highest recognition rate, so the method can adaptive access optimal performance. Experimental results show that compared with PDA and LDA, the new method improved the recognition accuracy substantially.


2018 ◽  
Vol 7 (3.33) ◽  
pp. 128
Author(s):  
Ki Young Lee ◽  
Kyu Ho Kim ◽  
Jeong Jin Kang ◽  
Sung Jai Choi ◽  
Yong Soon Im ◽  
...  

Real-time facial expression recognition and analysis technology is recently drawing attention in areas of computer vision, computer graphics, and HCI. Recognition of user’s emotion on the basis of video and voice is drawing particular interest. The technology may help managers of households or hospitals. In the present study, video and voice were converted into digital data through MATLAB by using PCA(Principal Component Analysis), LDA(Linear Discriminant Analysis), KNN(K Nearest Neighbor) algorithms to analyze emotions through machine learning. The manager of the psychological analysis counseling system may understand a user’s emotion in an smart phone environment. This system of the present study may help the manager to have a smooth conversation or develop a smooth relationship with a user on the basis of the provided psychological analysis results. 


Sign in / Sign up

Export Citation Format

Share Document