Research on Key Technology of Time Synchronization Network in Electric Power System

2015 ◽  
Vol 1092-1093 ◽  
pp. 332-336
Author(s):  
Hong Zhang Xiong ◽  
Xi Chen ◽  
Ling Teng ◽  
Qiang Gao ◽  
Yang Wang

Development of intelligent grid have increasing demands for time synchronization, high precision, large scale, high performance time synchronization system has become necessary guarantee for the normal operation of the power grid. This article introduced the composition of the time synchronization system, discusses the IEEE1588 implementation of high precision clock synchronization principle and SDH data transmission principle, analysis of the PTP protocol for transmission through the principle of the SDH E1 line, gives the networking scheme of PTP over the E1 way, which meet the precision requirement of 1 us.

2012 ◽  
Vol 532-533 ◽  
pp. 292-296 ◽  
Author(s):  
Kang Wang ◽  
Yong Hui Hu ◽  
Zai Min He ◽  
Hong Jiao Ma

In view of PTP high precise timing requirement for many application fields, GPS time service is provided with the advantages of high precision and high stabilization. The principle and timescale of PTP based on GPS are analyzed and discussed. And then a PTP time synchronization platform with GPS-based UTC time is designed and implemented, the correlative key design flowchart is described as well. Finally, the paper gives the experiment results, which show the time synchronization accuracies can reach nanosecond range.


2013 ◽  
Vol 860-863 ◽  
pp. 2501-2506
Author(s):  
Wen Hua Han ◽  
Xiao Hui Shen

The time synchronization network provides time benchmark tasks for various services in electric power system. With the development of the power grid, the applications require more and more accurate time synchronization precision. In this paper, a method of time synchronization based on adaptive filtering with a modified particle swarm optimization (MPSO-AF) was presented to satisfy the high precision and high security requirements of the time synchronization for smart grid. The modified PSO was introduced for tuning the weight coefficients of the adaptive filter to improve the filtering property. The proposed MPSO-AF hybrid algorithm can combine the advantageous properties of the modified PSO and the adaptive filtering algorithm to enhance the performance of the time synchronization. A comparison of simulation results shows the optimization efficacy of the algorithm.


Author(s):  
Peter Ro¨ssler ◽  
Roland Ho¨ller ◽  
Martin Zauner

This work describes a new methodology for the purpose of remote testing, debugging and maintenance of networked electronic and mechatronic systems which makes use of the IEEE 1588 high-precision clock synchronization protocol. After the underlying concepts of IEEE 1588 are briefly sketched, the paper describes how functionalities like testing, debugging and maintenance can benefit from a network-wide notion of time as provided by the IEEE 1588 standard. An implementation of the IEEE 1588 protocol with support for test, debug and maintenance as well as links to the integration of the proposed concept into existing tools are presented. Further, the proposed approach is discussed under consideration of recent standardization efforts. Finally, a case study from the area of automotive electronics is described.


2015 ◽  
Vol 713-715 ◽  
pp. 1373-1376
Author(s):  
Xue Ming Zhai ◽  
Lei Yang ◽  
Liang Yang

In order to solve the issues of time synchronization that occurs in simultaneous measurement in power system, designing a GPS clock synchronization method based on time different compensation which can guarantee high-precision whether the GPS satellites are locked or not. The paper provides the basic idea describe and the overall hardware and software design. Simulation results show that the scheme provides second pulse with error in 0.8μs when GPS is locked and provides second pulse with error in 7μs when GPS is unlocked for 12 hours. The accuracy is better than the existing references.


Sign in / Sign up

Export Citation Format

Share Document