Phase Transitions and Elementary Processes in Shape Memory Alloys

2015 ◽  
Vol 1101 ◽  
pp. 124-128
Author(s):  
Osman Adiguzel

Shape memory effect is a peculiar property exhibited by certain alloy systems, and shape memory alloys are recognized to be smart materials. These alloys have important ability to recover the original shape of material after deformation, and they are used as shape memory elements in devices due to this property. The shape memory effect is facilitated by a displacive transformation known as martensitic transformation. Shape memory effect refers to the shape recovery of materials resulting from martensite to austenite transformation when heated above reverse transformation temperature after deforming in the martensitic phase. These alloys also cycle between two certain shapes with changing temperature.Martensitic transformations occur with cooperative movement of atoms by means of lattice invariant shears on a {110} - type plane of austenite matrix which is basal plane of martensite.Copper based alloys exhibit this property in metastable β-phase field. High temperature β-phase bcc-structures martensiticaly undergo the non-conventional structures following two ordered reactions on cooling, and structural changes in nanoscale level govern this transition cooling. Atomic movements are also confined to interatomic lengths due to the diffusionless character of martensitic transformation.

2012 ◽  
Vol 510-511 ◽  
pp. 105-110 ◽  
Author(s):  
Osman Adiguzel

Martensitic transformations are first order solid state phase transitions and occur in the materials on cooling from high temperature. Shape memory effect is an unusual property exhibited by certain alloy systems, and based on martensitic transformation. The shape memory property is characterized by the recoverability of previously defined shape or dimension when they are subjected to variation of temperature. The shape memory effect is facilitated by martensitic transformation, and shape memory properties are intimately related to the microstructures of the materials. Martensitic transformations occur as martensite variant with the cooperative movement of atoms on {110}β - type plane of austenite matrix. Martensitic transformations have diffusionless character, and the atomic movement is confined to interatomic lengths in the materials. The basic factors which govern the martensitic transformation are Bain distortion and homogeneous shears. Copper based alloys exhibit this property in metastable β-phase field.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4227 ◽  
Author(s):  
Tetiana A. Kosorukova ◽  
Gregory Gerstein ◽  
Valerii V. Odnosum ◽  
Yuri N. Koval ◽  
Hans Jürgen Maier ◽  
...  

The present study is dedicated to the microstructure characterization of the as-cast high entropy intermetallics that undergo a martensitic transformation, which is associated with the shape memory effect. It is shown that the TiZrHfCoNiCu system exhibits strong dendritic liquation, which leads to the formation of martensite crystals inside the dendrites. In contrast, in the CoNiCuAlGaIn system the dendritic liquation allows the martensite crystals to form only in interdendritic regions. This phenomenon together with the peculiarities of chemical inhomogeneities formed upon crystallization of this novel multicomponent shape memory alloys systems will be analyzed and discussed.


2013 ◽  
Vol 762 ◽  
pp. 483-486 ◽  
Author(s):  
Osman Adiguzel

Shape memory alloys exhibit a peculiar property, shape memory effect that is the result from the structural changes in microscopic scale. These alloys return to previously defined shapes when they are subjected to variation of temperature after deformation of the low temperature phase. Shape-memory effect is based on martensitic transformation, with which the material changes its internal crystalline structure. The ordered structure or super lattice structure is essential for the shape memory effect of the material. Copper based alloys exhibit this property in the β-phase field, which possesses the simple bcc-structure at high temperature austenite phase. As the temperature is lowered, austenite phase undergoes martensitic transition following two ordering reactions, and microstructural changes in microscopic scale govern this transition. In the present work, Cu alloys were investigated by transmission electron microscope, TEM, and x-ray diffraction techniques.


Author(s):  
F.A. Calvo ◽  
J.M. Gómez de Salazar ◽  
A. Ureña ◽  
F.J. Méndez ◽  
J.M. Guilemany

The copper-based alloys studied belong to the group of those materials showing Shape Memory Effect (SME). Diffusion Bonding (DB) procedure is an alternative joining method of welding copper-based Shape Memory Alloys, traditionally welded by techniques like electron bean welding (EBW). However EBW provides embrittlement to the joint. This situation has been corrected by DB as confirm the SEM-EDS study presented here.A material shows SME when once has been thermomechanically deformed, it is able to recover its original (as fabricated) shape by means of a simple heat-up. This pheno menom is possible only for those materials which have β phase prone to undergo martensitic transformation. DB technique estimulates diffusion processes betwen materials by the combination of pressure, temperature, time, surface materials roughness and atmosphere condition in the experimental unit with the aid, sometimes, of a third material, in foil or plated form, which is known by the name of interlayer. The parameter set and details of attaing diffusion bonding joints procedure are under a patent developed recently by the authors .


2016 ◽  
Vol 18 (43) ◽  
pp. 29923-29934 ◽  
Author(s):  
S. Shi ◽  
J. F. Wan ◽  
X. W. Zuo ◽  
N. L. Chen ◽  
J. H. Zhang ◽  
...  

The martensite/parent coherent interface of Mn-based shape memory alloys (SMAs) is a significant part in the research of their martensitic transformation, reversible shape memory effect and magnetic shape memory effect.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1931-1936 ◽  
Author(s):  
FENG CHEN ◽  
BING TIAN ◽  
YUXIANG TONG ◽  
YUFENG ZHENG

This paper investigates the microstructure, martensitic transformation and shape memory effect of Co -16 Al alloy. The optical micrographs of Co -16 at .% Al alloy quenched from 1200°C show that the ε martensite occurs at room temperature, while some remaining γ phase can also be observed. This microstructure analysis can be supported by XRD pattern. It is shown that the alloy undergoes a martensitic reverse transformation at about 220°C during heating. However, no transformation from the fcc phase to hcp phase is detected by DSC measurement upon cooling. It is thought that the precipitation of β phase by aging at high temperature may suppress the martensitic transformation. The tension strain is 12% and the fracture strength is above 800MPa. No obvious yield deformation is observed from the stress-strain curve. SEM images exhibits many dimples on the fracture surface, which means the fracture mechanism is ductile rupture. Bending test show that only 25% deformation can be recovered due to shape memory effect when the pre-strain is 5%.


2013 ◽  
Vol 738-739 ◽  
pp. 195-199 ◽  
Author(s):  
Philippe Vermaut ◽  
Anna Manzoni ◽  
Anne Denquin ◽  
Frédéric Prima ◽  
Richard Portier

Among the different systems for high temperature shape memory alloys (SMA’s), equiatomic RuNb and RuTa alloys demonstrate both shape memory effect (SME) and MT temperatures above 800°C. Equiatomic compounds undergo two successive martensitic transformations, β (B2) → β’ (tetragonal) → β’’ (monoclinic), whereas out of stoechiometry alloys exhibit a single transition from cubic to tetragonal. In the case of two successive martensitic transformations, we expect to have a finer microstructure of the second martensite because it is supposed to develop inside the smallest twin elements of the former one. In equiatomic Ru-based alloys, if the first martensitic transformation is “normal”, the second one gives different unexpected microstructures with, for instance, twins with a thickness which is larger than the smallest spacing between twin variants of the first martensite. In fact, the reason for this unexpected hierarchy of the twins size is that the second martensitic transformation takes place in special conditions: geometrically, elastically and crystallographically constrained.


2015 ◽  
Vol 1105 ◽  
pp. 78-82 ◽  
Author(s):  
Osman Adiguzel

Shape memory alloys have a peculiar property to return to a previously defined shape or dimension when they are subjected to variation of temperature. Shape memory effect is facilitated by martensitic transformation governed by changes in the crystalline structure of the material. Martensitic transformations are first order lattice-distorting phase transformations and occur with the cooperative movement of atoms by means of lattice invariant shears in the materials on cooling from high temperature parent phase region. The material cycles between the deformed and original shapes on cooling and heating in reversible shape memory effect. Thermal induced martensite occurs as twinned martensite, and the twinned martensite structures turn into detwinned structures by deforming the material in the martensitic condition. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The deformed material recovers the original shape on first heating over the austenite finish temperature in reversible and irreversible shape memory cases. Meanwhile, the parent phase structure returns to the twinned structure in irreversible shape memory effect on cooling below to martensite finish temperature and to the detwinned structure in reversible shape memory effect. Therefore, the twinning and detwinning processes have great importance in the shape memory behaviour of the materials. Copper based alloys exhibit this property in metastable β-phase region, which has bcc-based structures at high temperature parent phase field, and these structures martensitically turn into layered complex structures with lattice twinning following two ordered reactions on cooling.


Sign in / Sign up

Export Citation Format

Share Document