The Effects of Coupling Agent on the Flame Retardant Properties of PP/ATH Nanocomposites

2015 ◽  
Vol 1115 ◽  
pp. 406-409 ◽  
Author(s):  
Fatimah A’thiyah Sabaruddin ◽  
Noorasikin Samat ◽  
A.I.H Dayang Habibah

It is known that polymeric materials are easily to get on fire due to their chemical structures. Thus the flame retardant material such as aluminium hydroxide (ATH) is used to improve the flame retardancy property of polymers. Polypropylene (PP) with various amount of nanosized ATH particles of (5, 10, 20, 30, 40 wt%) were compounded with an extruder machine. The effects of two different type of coupling agent (3-Aminopropyltriethoxysilane (APS) and Maleic anhydride grafted polypropylene (MAPP)) on the flame retardant properties were compared. All samples were characterized with two flame tests; the limiting oxygen index (LOI) and UL94 horizontal burning test (UL94 HB). It is found that both tests showed improvement on the flame resistance properties of the nanocomposites, mainly at high ATH loadings. Type of coupling agents affects the flame retardancy properties of PP/ATH nanocomposites.

2018 ◽  
Vol 47 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Jiapeng Long ◽  
Sanxi Li ◽  
Bing Liang

Purpose This paper aims to study a new halogen-free flame retardant that was prepared and characterised. Design/methodology/approach The phenyl phosphinic arid di-4-[1-(4-pheny phodphonic acid monophenyl ester-yl)-methyl-ethyl] phenyester dimelaminium (PDEPDM) was synthesised using phenylphosphonic dichloride, melamine, bisphenol A, triethylamine and dichloromethane via solvent-based reaction, that was added into the polyethylene to test flame performance. The chemical structures of PDEPDM were characterised by 1H nuclear magnetic resonance spectroscopy, mass spectrometry and Fourier transform infrared spectrometer. The thermal stability, mechanical and flame properties, and morphology for the char layer of composite materials were separately investigated using thermogravimetric analysis, tensile and charpy impact tests, limiting oxygen index (LOI) and UL-94 HB flammability standard and scanning electron microscope. Findings The results showed that the PDEPDM had been prepared successfully. When the intumescent fame retardant was added into the PE, the LOI of composite material was improved. Research limitations/implications The PDEPDM can be prepared successfully and can improve the flame resistance of composite material. Practical implications The PDEPDM has excellent flame-retardant properties and produce no toxic fumes when burnt in case of fire. Originality/value Under the optimal conditions, when the 32 per cent (Wt.%) PDEPDM was added into the PE, the LOI was 29.8, tensile strength and impact strength were 10.06 MPa and 16.77 kJ/m2.


2015 ◽  
Vol 17 (1) ◽  
pp. 123-133 ◽  
Author(s):  
S. Basak ◽  
Kartick. K. Samanta ◽  
S. Saxena ◽  
S.K. Chattopadhyay ◽  
R. Narkar ◽  
...  

Abstract Flame retardancy was imparted in cellulosic cotton textile using banana pseudostem sap (BPS), an eco-friendly natural product. The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of both the control and the treated fabrics were analysed in terms of limiting oxygen index (LOI), horizontal and vertical flammability. Fabrics treated with the non-diluted BPS were found to have good flame retardant property with LOI of 30 compared to the control fabric with LOI of 18, i.e., an increase of 1.6 times. In the vertical flammability test, the BPS treated fabric showed flame for a few seconds and then, got extinguished. In the horizontal flammability test, the treated fabric showed no flame, but was burning only with an afterglow with a propagation rate of 7.5 mm/min, which was almost 10 times lower than that noted with the control fabric. The thermal degradation and the pyrolysis of the fabric samples were studied using a thermogravimetric analysis (TGA), and the chemical composition by FTIR, SEM and EDX, besides the pure BPS being characterized by EDX and mass spectroscopy. The fabric after the treatment was found to produce stable natural khaki colour, and there was no significant degradation in mechanical strengths. Based on the results, the mechanism of imparting flame retardancy to cellulosic textile and the formation of natural colour on it using the proposed BPS treatment have been postulated.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3656
Author(s):  
Hangfeng Yang ◽  
Hangbo Yue ◽  
Xi Zhao ◽  
Minzimo Song ◽  
Jianwei Guo ◽  
...  

A novel halogen-free flame retardant containing sulfonamide, 1,3,5,7-tetrakis (phenyl-4-sulfonamide) adamantane (FRSN) was synthesized and used for improving the flame retardancy of largely used polycarbonate (PC). The flame-retardant properties of the composites with incorporation of varied amounts of FRSN were analyzed by techniques including limited oxygen index, UL 94 vertical burning, and cone calorimeter tests. The new FR system with sulfur and nitrogen elements showed effective improvements in PC’s flame retardancy: the LOI value of the modified PC increased significantly, smoke emission suppressed, and UL 94 V-0 achieved. Typically, the composite with only 0.08 wt% of FRSN added (an ultralow content) can increase the limiting oxygen index (LOI) value to 33.7% and classified as UL 94 V-0 rating. Furthermore, the mechanical properties and SEM morphology indicated that the FRSN has very good compatibility with PC matrix, which, in turn, is beneficial to the property enhancement. Finally, the analysis of sample residues after burning tests showed that a high portion of char was formed, contributing to the PC burning protection. This synthesized flame retardant provides a new way of improving PC’s flame retardancy and its mechanical property.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 127 ◽  
Author(s):  
Yu Sun ◽  
Yazhen Wang ◽  
Li Liu ◽  
Tianyuan Xiao

A 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) acrylate, (6-oxidodibenzo [c,e][1,2] oxaphosphinin-6-yl) methyl acrylate (DOPOAA), has been prepared. Copolymers of styrene (St) and DOPOAA were prepared by emulsion polymerization. The chemical structures of copolymers containing levels of DOPOAA were verified using Fourier transform infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties and flame-retardant behaviors of DOPO-containing monomers and copolymers were observed using thermogravimetric analysis and micro calorimetry tests. From thermogravimetric analysis (TGA), it was found out that the T5% for decomposition of the copolymer was lower than that of polystyrene (PS), but the residue at 700 °C was higher than that of PS. The results from micro calorimetry (MCC) tests indicated that the rate for the heat release of the copolymer combustion was lower than that for PS. The limiting oxygen index (LOI) for combustion of the copolymer rose with increasing levels of DOPOAA. These data indicate that copolymerization of the phosphorus-containing flame-retardant monomer, DOPOAA, into a PS segment can effectively improve the thermal stability and flame retardancy of the copolymer.


2017 ◽  
Vol 48 (1) ◽  
pp. 87-118 ◽  
Author(s):  
MD Teli ◽  
Pintu Pandit

As far as the value addition of textile is concerned, flame retardancy of textile materials is considered to be one of the most important properties in textile finishing by both industries as well as academic researchers. Flame-retardant property with thermal stability was imparted to cotton by using green coconut ( Cocos nucifera Linn) shell extract, a natural waste source of coconut. Coconut shell extract was analyzed by high-performance liquid chromatography, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and its phytochemical analysis was also carried out. The coconut shell extract (acidic after extraction) was applied in three different pH (acidic, neutral, and alkaline) conditions to the cotton fabric. Flame-retardant properties of the untreated and the treated cotton fabrics were analyzed by limiting oxygen index and vertical flammability. The study showed that all the treated fabrics had good flame resistance property compared to that of the untreated fabric. The limiting oxygen index value was found to increase by 72.2% after application of the coconut shell extract from alkaline pH. Pyrolysis and char formation behavior of the concerned fabrics were studied using thermogravimetric analysis and differential scanning calorimetric analysis in a nitrogen atmosphere. The physicochemical composition of the untreated and coconut shell extract treated cotton fabrics were analyzed by attenuated total reflection–Fourier transform infrared, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Also, treated cotton fabric showed natural brown color and antibacterial property against both Gram-positive and Gram-negative bacteria. The durability of the flame-retardant functionality to washing with soap solution has also been studied and reported in this paper.


1993 ◽  
Vol 11 (5) ◽  
pp. 442-456 ◽  
Author(s):  
Jun Zhang ◽  
Michael E. Hall ◽  
A. Richard Horrocks

This paper is the first in a series of four which investigates the burning behaviour and the influence of flame retardant species on the flam mability of fibre-forming polymer and copolymers of acrylonitrile. A pressed powdered polymer sheet technique is described that enables a range of polymer compositions in the presence and absence of flame retardants to be assessed for limiting oxygen index, burning rate and char residue deter minations. The method offers a rapid, reproducible and convenient means of screening possible flame retardant systems, and LOI values compare favourably with those of films and fabrics comprising the same polymeric type. Burning rates, however, are sensitive to changes in physical sample character such as form (film vs. powder sheet) and density. Thus the technique forms an excellent basis for the generation of burning data which will enable comprehensive studies of acrylic polymer flammability and flame retardancy to be undertaken.


2015 ◽  
Vol 30 (6) ◽  
pp. 816-826 ◽  
Author(s):  
Yiren Huang ◽  
Jianwei Yang ◽  
Zhengzhou Wang

Flame-retardant properties of ammonium polyphosphate (APP) and its two microcapsules, APP with a shell of melamine–formaldehyde (MF) resin (MFAPP) and APP with a shell of epoxy resin (EPAPP), were studied in styrene–butadiene–styrene (SBS). The results indicate that APP after the microencapsulation leads to an increase in limiting oxygen index in SBS compared with APP. When dipentaerythritol is incorporated into the SBS composites containing the APP microcapsules, a further improvement in flame retardancy of the composites is observed. The microencapsulation does not result in much improvement of mechanical properties. Moreover, the effect of a compatibilizer (SBS grafted with maleic anhydride) on flame-retardant and mechanical properties of SBS/APP composites was investigated.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Lin Liu ◽  
Rui Lv

AbstractA DOPO (9,10-dihydro-9-oxa-10-phosphaphen-anthrene-10-oxide)-based halogen-free flame retardant (ODOPM-CYC) was synthesized and incorporated in rigid polyurethane foam (RPUF). The structure of ODOPM-CYC was characterized by Fourier transform infrared spectra (FTIR), 1H NMR and 31P NMR. The effects of ODOPM-CYC on the flame resistance, mechanical performances, thermal properties and cell structure of RPUF were also investigated. The results showed that the incorporation of ODOPM-CYC strikingly enhanced flame retardant properties of RPUF. The flame retarded RPUF acquired a limiting oxygen index (LOI) value of 26% and achieved UL-94 V-0 rating with the phosphorus content of 3 wt%. The smoke production rate (SPR) also showed an obvious decrease and total smoke release (TSR) was 39.8% lower than that of neat RPUF. Besides, the results demonstrated that the incorporation of ODOPM-CYC provided RPUF better thermal stability but did not show any obvious influence on its thermal conductivity.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1708 ◽  
Author(s):  
Wang ◽  
Teng ◽  
Yang ◽  
You ◽  
Zhang ◽  
...  

In this article, the intumescent flame-retardant microsphere (KC-IFR) was prepared by inverse emulsion polymerizations, with the use of k-carrageenan (KC) as carbon source, ammonium polyphosphate (APP) as acid source, and melamine (MEL) as gas source. Meanwhile, benzoic acid functionalized graphene (BFG) was synthetized as a synergist. A “four-source flame-retardant system” (KC-IFR/BFG) was constructed with KC-IFR and BFG. KC-IFR/BFG was blended with waterborne epoxy resin (EP) to prepare flame-retardant coatings. The effects of different ratios of KC-IFR and BFG on the flame-retardant properties of EP were investigated. The results showed that the limiting oxygen index (LOI) values increased from 19.7% for the waterborne epoxy resin to 28.7% for the EP1 with 20 wt% KC-IFR. The addition of BFG further improved the LOI values of the composites. The LOI value reached 29.8% for the EP5 sample with 18 wt% KC-IFR and 2 wt% BFG and meanwhile, UL-94 test reached the V-0 level. In addition, the peak heat release (pHRR) and smoke release rate (SPR) of EP5 decreased by 63.5% and 65.4% comparing with EP0, respectively. This indicated the good flame-retardant and smoke suppression property of EP composites coating.


2016 ◽  
Vol 47 (3) ◽  
pp. 363-376 ◽  
Author(s):  
AA Younis

The purpose of this research is to improve ignition properties and anti-dripping of polyester fabric by using adhesion promoter (AP). The ignition properties of the untreated and treated specimens with durable flame retardant coating and non-durable flame retardant coating were estimated by horizontal flame chamber (UL-94), single-flame source and limiting oxygen index (LOI). The chemical structures of the pre- and final composites have been determined by Fourier transform infrared spectra with attenuated total reflection analysis spectroscopy. The mechanical tests and thermal properties were applied to study their tensile strength and thermal behaviors. The results show that AP has improved the flame retardancy and dripping of PET fabric compared to blank. The char yield increased from 8% to 18%, LOI from 17.5% to 27.5%.


Sign in / Sign up

Export Citation Format

Share Document