Study on the Characterization of Zinc Ferrite High-Temperature Coal Gas Desulfurization Agent

2010 ◽  
Vol 129-131 ◽  
pp. 1233-1237
Author(s):  
Hong Yan Xu ◽  
Mei Sheng Liang ◽  
Chun Hu Li

Using ferric nitrate, zinc nitrate, ammonia liquor and binder as main raw materials, five kinds of zinc ferrite sorbents were prepared by the co-precipitation method. The effects of the different binders on the structure and texture of zinc ferrite sorbents were investigated. The morphology, composite structure, pore properties, and mechanical strength were studied by using modern several physicochemical techniques such as powder X-ray diffraction (XRD), scanning electronic microscopy (SEM), strength tester and gas absorption meter. It is showed that spinel structure ZnFe2O4 is not affected by different binders,and its particle diameter is in micron leve1. The spinel structures are present in the sorbents that have been calcined at 750 0C.. The sorbent employed kaolinite as binder is the best one of the five types of sorbents for desulfurization, while the one employed diatomite is the worst.Different binders modify the textural properties, modifying consequently the sorbent reactivity. Furthermore, the reactivity and sulfur capacity of sorbents are increasing with an increase in the pore volume.

2016 ◽  
Vol 848 ◽  
pp. 99-102 ◽  
Author(s):  
Theerapong Santhaveesuk ◽  
Kwunta Siwawongkasem ◽  
Siriwimon Pommek ◽  
Supab Choopun

ZnO nanoparticles were successfully synthesized by a low cost co-precipitation method using zinc nitrate and sodium hydroxide as the raw materials. It was observed that the synthesized temperatures greatly effect on the size of ZnO nanoparticles. The lower synthesized temperatures resulted in the smaller nanoparticles. By adjusting the mole ratio of sodium hydroxide, the size of ZnO nanoparticles was also changed. The smallest ZnO particles was 47 nm obtained with 0.7 mole of sodium hydroxide. The smallest ZnO nanoparticles from each synthesized temperatures were fabricated as humidity sensor, showing an impressive performance under different relative humidity (17-94% RH). It should be noticed that the ZnO nanoparticles humidity sensor synthesized at 75 °C exhibited high response for 2 times higher than that of synthesized at 95 °C. This is attributed to the higher surface area of ZnO nanoparticles for absorbed water molecule.


In through concoction co-precipitation strategy using ferric nitrate, zinc nitrate and sodium hydroxide in fluid arrangements, orchestrate and portrayal of Fe doped ZnO nanoparticles were prepared in the present work. X-beam diffraction has confirmed the growth of Fe doped ZnO from the precursor. This result has revealed that nanoparticles have integrated excellent crystalline forces in nature. SEM investigations show that ZnO nanoparticles have been doped by the round and minimally agglomerated Fe. Room temperature powerless ferromagnetism, distinctive in the appealing characteristics of Fe doped ZnO powderKeywords in relation to room temperature: zinc oxide, SEM, chemical precipitation, XRD, VSM


2019 ◽  
Vol 807 ◽  
pp. 50-56
Author(s):  
Yun Long Zhou ◽  
Zhi Biao Hu ◽  
Li Mei Wu ◽  
Jiao Hao Wu

Using hydrated manganese sulfate and general type graphene (GR) as raw materials, Mn3O4/GR composite has been successfully prepared by the liquid phase chemical co-precipitation method at room temperature. X-ray diffraction (XRD) was used to investigate the phase structure of Mn3O4powder and Mn3O4/GR composite; The electrochemical performances of the samples were elucidated by cyclic voltammetry and galvanostatic charge-discharge test in 0.5 mol/L Na2SO4electrolyte. The results show that the Mn3O4/GR composite possesses graphene phase and good reversibility; the composite also displays a specific capacitance of 318.8 F/g at a current density of 1 A/g.


2015 ◽  
Vol 1101 ◽  
pp. 286-289 ◽  
Author(s):  
Maya Rahmayanti ◽  
Sri Juari Santosa ◽  
Sutarno

Gallic acid-modified magnetites were synthesized by one and two-step reactions via the newly developed sonochemical co-precipitation method. The two-step reaction included the formation of magnetite powder and mixing the magnetite powder with gallic acid solution, while the one-step reaction did not go through the formation magnetite powder. The obtained gallic acid-modified magnetites were characterized by the Fourier Transform Infrared (FTIR) spectroscopy, the X-Ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM). More over, the magnetic properties were studied by using a Vibrating Sample Magnetometer (VSM). The characterization results showed that there were differences in crystalinity, surface morphology and magnetic properties of products that were formed by one and two-step reactions.


2014 ◽  
Vol 989-994 ◽  
pp. 611-614
Author(s):  
Ling Li ◽  
Wen Ming Zhang ◽  
Hua Yan Zhang ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Vanadium/iron co-doped nanoTiO2 transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, ferric nitrate, ammonium metavanadate, etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, EDS, nanolaser particle size analyzer, and UV-Vis spectrophotometer. The photocatalytic properties of V/Fe doped TiO2 were studied through degrading acid 3R dye, and the results show that when the content of V/Fe was 0.5%, the degradation rate reached more than 96% under irridation for 60 min.


2013 ◽  
Vol 341-342 ◽  
pp. 114-118
Author(s):  
Min Zeng ◽  
Yun Hong Wang

The Y3Al5-xFexO12 (0x5, YAIG) powders have been prepared by co-precipitation technique in which NH4HCO3 or (NH4)2CO3 is used as a precipitant and Y(NO3)3·6H2O, Al (NO3)3·9H2O and Fe (NO3)3·9H2O as raw materials. The composition of YAIG precursor, the phase formation process of YAIG and the properties of the powders were investigated by means of XRD, SEM, TEM and EDS. The results indicated that the precipitant effects the preparation of pure-phase YAIG powders. AC as precipitant could produce a hydroxide precursor, which transformed to a mixture. AHC as precipitant could produce a loosely agglomerated carbonate precursor. The resultant YAIG powders showed good dispersity and excellent sinterability.


2012 ◽  
Vol 512-515 ◽  
pp. 535-538 ◽  
Author(s):  
Shuai Sun ◽  
Qiang Xu

A Coprecipitation Method Was Applied to Synthesize Al2O3/GdAlO3 Compound Powder, Using Ammonia as the Precipitator. Gadolinium Oxide and Aluminium Nitrate Were Used as the Raw Materials with the Eutectic Ratio( 77 mol% Al 3+ – 23 mol% Gd 3+ ). the Precursor Was Calcined at Different Temperatures from 1200 to 1600 °C. the Phase Identifications at Different Temperatures Were Characterized by X-ray Diffractometry (XRD). the Growth Morphology of Particles Were Investigated Using Field Emission Electro Microscopy (FE-SEM). the Results Reveal that GdAlO3 Crystallized Earlier than α-Al2O3. the Diffraction Peaks of α-Al2O3 Phase Were Observed after Calcination at 1300°C for 1 H. Metastable Phase Gd3Al5O12 Underwent Complete Decomposition at 1600°C for 1 H. Gadolinium Aluminate and α-Al2O3 Showed Different Growth Mechanism during the Calcination Process. the Average Grain Size of the Calcined Powder Increased from ~40 to ~900 Nm as the Calcination Temperature Increased from 1200 to 1600 °C.


2014 ◽  
Vol 602-603 ◽  
pp. 110-113 ◽  
Author(s):  
Yan Juan Li ◽  
Ying Chun Zhang ◽  
Jia Xun Leng

In this paper, yttrium aluminum garnet (YAG) powders were synthesized by the normal-strike co-precipitation method (adding precipitant solution to the metal nitrate solution). Aluminum nitrate (Al (NO3)39H2O) and yttrium nitrate (Y(NO3)36H2O) were used as raw materials and ammonium hydrogen carbonate (AHC) was used as the precipitant. The precursor was calcined at the temperature of 900-1200 °C for 2 hours. The crystal structure and microstructure of YAG powders were investigated and analyzed by XRD, FESEM, TG-DTA and laser particle size analysis. The results show that the concentration of metal ion and AHC have a significant effect on crystal structure of YAG powders, and pure YAG powders were obtained at 1000 °C when the concentration of Al3+was 0.1 mol/L and the concentration of AHC was 1 mol/L. The average primary crystallites particle sizes were ranged from 50 nm to100 nm in diameter. nanosize YAG powders with excellent properties and good dispersity can be produced at the temperature of 1100 °C.


Author(s):  
Jose Higino Dias Filho ◽  
Jorge Luis López Aguilar ◽  
Adriana Silva De Albuquerque ◽  
Renato Dourado Maia ◽  
Wesley De Oliveira Barbosa ◽  
...  

Nanocrystalline NiFe2O4 particles prepared by chemical co-precipitation method were studied using magnetic measurements, 57Fe Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. Fits to Mössbauer spectra, in the range of 4.2 K – 300 K, were done using spin hamiltonians to describe both the electronic and nuclear interactions, a model of superparamagnetic relaxation of two levels (spin ½) and stochastic theory, a log-normal particle size distribution function as well as a dependency of the magnetic transition temperature and the anisotropy constant on particle diameter. We have used evolutionary strategies to fit the more complex Mössbauer spectra line shapes. The nanoparticles have an average size of 7 nm and exhibit superparamagnetism at room temperature. The saturation magnetization (Ms) at 4.2 K was determined from M vs. 1/H plots by extrapolating the value of magnetizations to infinite fields, to 24.21 emu/g and coercivity to 3.15 kOe. A magnetic anisotropy energy constant (K) 1.9´105 J/m3, at 4.2 K, were calculated from magnetization measurements. The synthesis, characterization, and functionalization of magnetic nanoparticles is a highly active area of current research located at the interface between materials science, biotechnology, and medicine. Superparamagnetic iron oxides nanoparticles have unique physical properties and have emerged as a new class of diagnostic probes for multimodal tracking and as contrast agents for magnetic resonance imaging (MRI).


2012 ◽  
Vol 512-515 ◽  
pp. 2131-2134 ◽  
Author(s):  
Run Xia He ◽  
Quan Sheng Liu ◽  
Fang Wu ◽  
Chen Liang Zhou ◽  
Ke Duan Zhi ◽  
...  

By using copper manganese sulfated and lanthanum nitrate as raw materials, and NaOH as precipitating agent, the copper-manganese-lanthanum mixed oxides were prepared through co-precipitation method. The catalyst samples were characterized by XRD, TPR and TPD, and the catalytic properties on water gas shift (WGS) reaction were studied. The results show that, La doping didn’t change the crystal structure, but the sample crystallinity was deteriorated. Cu-Mn/La-0.5 sample reduction temperature was low and the adsorption quantity of activated CO2 was large, which implied that copper and manganese components have good metal synergic effect, lower temperature activity and thermal stability.


Sign in / Sign up

Export Citation Format

Share Document