Preparation and Characterization of Poly(propylene carbonate)/Alkali Lignin Composite Sheets by Calendering Process

2011 ◽  
Vol 233-235 ◽  
pp. 1786-1789 ◽  
Author(s):  
Li Sha Pan ◽  
Nai Xu ◽  
Zheng Tian ◽  
Ling Bin Lu ◽  
Su Juan Pang ◽  
...  

PPC is a new biodegradable aliphatic polycarbonate with poor thermal stability and mechanical properties which is difficult to form sheets or films and so on. Through the addition of alkali lignin, thermal stability and mechanical properties of PPC was improved largely. PPC/ alkali lignin sheets could be prepared. DSC results showed that the thermal stability of PPC was improved by the introduction of alkali lignin. SEM showed good dispersion of alkali lignin particles into PPC matrix that resulted in good miscibility. Improved mechanical properties and thermal stability of PPC/ alkali lignin blends were attributed to stronger interfacial interaction of PPC and alkali lignin. These results indicate that blending PPC with alkali lignin is an efficient and convenient method to improve the properties of PPC.

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Liu Huihong ◽  
Pan Lisha ◽  
Lin Qiang ◽  
Xu Nai ◽  
Lu Lingbin ◽  
...  

AbstractPoly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate with poor thermal stability and mechanical properties which shows difficulty in forming film by melt-extrusion technology. Through the addition of polystyrene (PS), the melt-extrusion film processability, thermal stability and mechanical properties of PPC was improved largely. PPC/PS films were prepared in the the melt-extrusion process successfully. DSC data showed that there was some degree of miscibility between PPC and PS. SEM showed good dispersion of PS particles into PPC matrix. Improved mechanical properties and thermal stability of PPC/PS blends were attributed to homogeneous dispersing and stronger interfacial interaction of PS and PPC. These results indicate that blending PPC with PS is an efficient and convenient method to improve the properties of PPC, and the composites can be used as a common packaging material for a wide range of applications.


2018 ◽  
Vol 19 (12) ◽  
pp. 3723 ◽  
Author(s):  
Shaoyun Chen ◽  
Min Xiao ◽  
Luyi Sun ◽  
Yuezhong Meng

The terpolymerization of carbon dioxide (CO2), propylene oxide (PO), and cyclohexene oxide (CHO) were performed by both random polymerization and block polymerization to synthesize the random poly (propylene cyclohexene carbonate) (PPCHC), di-block polymers of poly (propylene carbonate–cyclohexyl carbonate) (PPC-PCHC), and tri-block polymers of poly (cyclohexyl carbonate–propylene carbonate–cyclohexyl carbonate) (PCHC-PPC-PCHC). The kinetics of the thermal degradation of the terpolymers was investigated by the multiple heating rate method (Kissinger-Akahira-Sunose (KAS) method), the single heating rate method (Coats-Redfern method), and the Isoconversional kinetic analysis method proposed by Vyazovkin with the data from thermogravimetric analysis under dynamic conditions. The values of ln k vs. T−1 for the thermal decomposition of four polymers demonstrate the thermal stability of PPC and PPC-PCHC are poorer than PPCHC and PCHC-PPC-PCHC. In addition, for PPCHC and PCHC-PPC-PCHC, there is an intersection between the two rate constant lines, which means that, for thermal stability of PPCHC, it is more stable than PCHC-PPC-PCHC at the temperature less than 309 °C and less stable when the decomposed temperature is more than 309 °C. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetric analysis/infrared spectrometry (TG/FTIR) techniques were applied to investigate the thermal degradation behavior of the polymers. The results showed that unzipping was the main degradation mechanism of all polymers so the final pyrolysates were cyclic propylene carbonate and cyclic cyclohexene carbonate. For the block copolymers, the main chain scission reaction first occurs at PC-PC linkages initiating an unzipping reaction of PPC chain and then, at CHC–CHC linkages, initiating an unzipping reaction of the PCHC chain. That is why the T−5% of di-block and tri-block polymers were not much higher than that of PPC while two maximum decomposition temperatures were observed for both the block copolymer and the second one were much higher than that of PPC. For PPCHC, the random arranged bulky cyclohexane groups in the polymer chain can effectively suppress the backbiting process and retard the unzipping reaction. Thus, it exhibited much higher T−5% than that of PPC and block copolymers.


2018 ◽  
Vol 25 (5) ◽  
pp. 975-982 ◽  
Author(s):  
Alireza Khoshkbar Sadeghi ◽  
Maryam Farbodi

AbstractIn the present research, polyaniline is used as a conducting polymer and polyvinyl alcohol is also used as a biopolymer, because of its mechanical properties and suitable processability. Also, silver nanoparticles are considered as a reinforcing agent of thermal stability, mechanical and antibacterial properties to prepare polyaniline-polyvinyl alcohol-silver nanocomposite. The synthesis of polyaniline-polyvinyl alcohol composite and polyaniline-polyvinyl alcohol-silver nanocomposite is performed through addition of polyaniline and silver in polyvinyl alcohol solution. In order to review thermal, mechanical and antibacterial properties of synthesized composite and nanocomposites, components with different weight rates are used. The obtained results from thermogravimetric analysis (TGA) tests also indicate promotion of thermal stability of polyaniline-polyvinyl alcohol-silver nanocomposite compared with pure polyvinyl alcohol in temperatures above 400°C. The results of Fourier-transform infrared (FTIR) spectroscopy revealed the presence of polyaniline, polyvinyl alcohol and silver in the structure of polyaniline-polyvinyl alcohol-silver triple nanocomposite film. The obtained results from a review of antibacterial properties showed that polyaniline-polyvinyl alcohol-silver nanocomposites have antibacterial effects on two different types of Gram-positive and Gram-negative bacteria. The obtained results from a review of mechanical properties of nanocomposites showed that the greatest value of tensile strength (13.8 MPa) belonged to polyaniline-polyvinyl alcohol-silver (88%/9%/3% w/w) nanocomposites. Therefore, this is determined as an optimal triple nanocomposite. In addition, scanning electron microscopy (SEM) coupled with an energy dispersive X-ray (EDX) system was used to characterize the composition and structure of polyaniline-polyvinyl alcohol-silver nanocomposite film.


2013 ◽  
Vol 750-752 ◽  
pp. 1609-1612 ◽  
Author(s):  
Yang Ti ◽  
Jian Ru Wu ◽  
Da Jun Chen

In this paper, Fe-OCAP/PU blends were prepared. The mechanical properties and thermal stability of the samples were studied by tensile tests and thermogravimetric analysis, respectively. Results showed that the mechanical properties and thermal stability of the samples were improved with the increase of Fe-OCAP content. The antibacterial property of Fe-OCAP and Fe-OCAP/PU films was investigated by agar diifusion method and shake flask method, respectively. Fe-OCAP and Fe-OCAP/PU films showed efficient antibacterial activity againstS.aureus.


2014 ◽  
Vol 904 ◽  
pp. 74-77 ◽  
Author(s):  
Qu Li ◽  
Heng Wu ◽  
Si Yuan Xie ◽  
Jiao Sun ◽  
Xing Hai Liu ◽  
...  

Biodegradable poly (propylene carbonate) (PPC) composite with a slight improvement in the thermal stability and tensile strength was successfully prepared by incorporating a low content of nano-SiO2. Tensile tests demonstrate the better mechanical properties of the composites prepared in this study. The obtained composites increases sharply from 1.57Mpa to 12.04Mpa by incorporating 5wt% nano-SiO2. Furthermore, the composites show approximately 8°C higher glass transition temperature (Tg) than that of neat PPC.The Tdmax of composite with 5wt% of nano-SiO2 was about 40°C higher than that of neat PPC.


1996 ◽  
Vol 8 (2) ◽  
pp. 243-263 ◽  
Author(s):  
B Dao ◽  
D G Hawthorne ◽  
J H Hodgkin ◽  
M B Jackson ◽  
T C Morton

New bismaleimide monomers, based on pure diaminobismides (DABIs) have been synthesized. In a number of cases the bismaleimide of the 2:1 (amine/anhydride) DABI adduct has been isolated as a pure compound, but where the starting DABI consisted of a mix of imide oligomers of the diamine and dianhydride (2:1, 3:2 and higher) the corresponding bismaleimide product was found also to have a similar composition ratio. This has been confirmed in one example by separation of the oligomer mix and characterization of the components. The utility of the various bismaleimides as monomers in composite matrices has been assessed by cocuring with the common coreactant, 3,3′-diallylbisphenol A. The physical properties and thermal stability of neat resin samples and laminates are reported as well as some mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document