Effect of CFRP Thickness on Load-Carrying Capacities and Failure Modes of Strengthened RC Beams

2011 ◽  
Vol 255-260 ◽  
pp. 109-112
Author(s):  
Guo Wen Yao ◽  
Mao Sheng Li ◽  
Shi Ya Li

The effect of thickness of externally bonded carbon fiber laminate (CFRP) on load-carrying capacity and failure modes was analyzed for the strengthened reinforced concrete (RC) beams under bending load. According to the balance equations of applied force and moment, the relation was obtained between ultimate loading of strengthened beam and thickness of CFRP, and the failure modes were predicted for the CFRP strengthened beams. The load-carrying capacity of strengthened RC beam is higher with thicker externally bonded CFRP until it reaches the ultimate loading. The mechanical analysis is in good agreement with the three-point bending experiments performed on CFRP strengthened RC beams.

2011 ◽  
Vol 287-290 ◽  
pp. 1130-1134
Author(s):  
Hong Chang Qu ◽  
Chang Qing Wu ◽  
Ling Ling Chen

In this paper, different types of debonding failure modes are described. Study of concrete cracking behavior and interfacial debonding fracture in fiber reinforced polymer (FRP)-strengthened concrete beams are carried out. A finite element analysis is performed to investigate the different types of debonding propagation along FRP–concrete interface and crack distribution in concrete. The proposed FE, denoted as FRP–FB (force-based) beam, is used to predict the load-carrying capacity and the applied load-midspan deflection response of RC beams subjected to four-point bending loading. Numerical simulations and experimental measurements are compared based on numerous tests available in the literatures and published by different authors. The numerically simulated responses agree remarkably well with the corresponding experimental results. It demonstrates that the proposed two-dimensional frame finite element (FE) is able to accurately estimate the load-carrying capacity of reinforced concrete (RC) beams flexurally strengthened with externally bonded fibre reinforced polymer (FRP) strips and plates.


2012 ◽  
Vol 19 (2) ◽  
pp. 159-168 ◽  
Author(s):  
Muthukamatchi Chelliah Sundarraja ◽  
Sandrasekaran Sivasankar

AbstractThe main objective of this investigation is to assess the feasibility of strengthening square hollow steel tubular sections subjected to compression and to develop or predict the suitable wrapping scheme of fibre reinforced polymer (FRP) to enhance the structural behaviour of it. For this study, compact mild steel tubes were used with the main variable being FRP characteristics. Carbon fibre has been considered and used as strips with several other parameters such as the number of layers, width and spacing of strips, the sectional area of strips, and wrapping scheme. Experiments were undertaken until column failure to fully understand the influence of FRP characteristics on the compressive behaviour of square hollow steel tubes including their failure modes, stress-strain behaviour, enhancement in load carrying capacity and effect of distribution of CFRP layers. The behaviour of externally bonded hollow steel tubular sections was compared with one another and also with the control specimen. From the test results, it was found that CFRP strengthening significantly increases the load carrying capacity and ductility of the hollow steel tubular members further.


2015 ◽  
Vol 9 (1) ◽  
pp. 426-434 ◽  
Author(s):  
Guibing Li ◽  
Aihui Zhang ◽  
Yugang Guo

Most of the laboratory tests investigated the flexural performance of un-preloaded or undamaged RC beams strengthened with CFRP composites. However, in engineering applications, the structural member must carry a certain load or damage. There is a lack of systematical investigations on the effects of preload or damage level on the flexural load-carrying capacity of CFRP-strengthened RC beams. This paper tested 22 RC beams to investigate the influence of preload level on flexural load-carrying capacity of CFRP-strengthened RC beams. The test variables are preload level, amount of CFRP sheets, tension rebar ratio, and concrete strength. The test results show that if the preload level is not more than 80% of the yielding strength of the original beam, the preload or damage level does not influence the flexural load-carrying capacity of CFRP-strengthened RC beams. However, the ultimate flexural load-carrying capacity is significantly poor than that of RC beam strengthened under a preload level not more than 80% of the yielding strength, if the RC beams are strengthened under a preload level more than 90% of the yielding strength.


2021 ◽  
Vol 16 ◽  
pp. 155892502110203
Author(s):  
Mohammad Iqbal Khan ◽  
Galal Fares ◽  
Yassir Mohammed Abbas ◽  
Wasim Abbass ◽  
Sardar Umer Sial

Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
N. Aravind ◽  
Amiya K. Samanta ◽  
Dilip Kr. Singha Roy ◽  
Joseph V. Thanikal

AbstractStrengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.


2017 ◽  
Vol 26 (6) ◽  
pp. 096369351702600
Author(s):  
Min Hou ◽  
Jiangfeng Dong ◽  
Lang Li ◽  
Shucheng Yuan ◽  
Qingyuan Wang

In order to make an effective use of the recycled aggregate concrete (RAC), a total of six steel tube RAC columns and six basalt fiber (BF) reinforced RAC columns, including six columns that were externally strengthened with aramid fiber reinforced polymer (AFRP) sheets, were fabricated and tested. This were to provide a strengthening solution to upgrade the load carrying capacity, ductility and rigidity of the RAC filled steel tube columns. Besides, the recycled coarse aggregate (RCA) replacement ratios for production of RAC was analyzed. The results show that the load carrying capacity and ultimate displacements of the RAC filled ST columns could be improved greatly by adding of basalt fiber, especially for the specimens with 50% and 100% RCA replacement ratio. The similar result was also found for the specimens strengthened with AFRP reinforcement, along with the stiffness of the columns were enhanced obviously. Moreover, the highest improving on the load carrying capacity, stiffness and ultimate displacement was found in the specimens both reinforced by adding of BF and strengthening of AFRP. However, the failure modes of the specimens with BF reinforced RAC gave a higher deformability than the one with AFRP strengthening arrangement.


2020 ◽  
Vol 54 (26) ◽  
pp. 4025-4034
Author(s):  
Chang Xu ◽  
Wenjing Wang ◽  
Zhiming Liu ◽  
Chen Fu

As the weakness zone of composite structures, joints are of great concern. Adding fasteners in the bonded joint is another type of jointing, technology used in engineering. In this research, considering a new type of flat-joggle-flat carbon fibre reinforced plastic (CFRP) joint, a prediction model based on the commercial software ABAQUS was proposed to predict the joint load carrying capacity and analyse the joint failure modes. Tensile tests were performed to verify the validity of the model. Furthermore, the orthogonal design was applied to explore the effects of four kinds of factors on the hybrid joints. The results showed that the load-carrying capacity of the hybrid joint improved by 40.5% and 31.9% on average, compared with that of the adhesively bonded joint and the bolted joint, respectively. The carrying capacity for the bonded joint, bolted joint and hybrid joint predicted by the model has error values of 3.5%, 2.7% and 3.1%, respectively, which illustrates good accuracy with the test results. The width-to-diameter ratio appears to have the most substantial effect on the first drop load and the maximum load of the hybrid joint. The failure modes are influenced by the width-to-diameter ratio, edge-to-diameter ratio and stacking sequence.


Author(s):  
Ravi Bhatta ◽  
Wendy Reffeor

Polygonal shafts are used in power transmission as alternatives to keyed and splined shafts. They are designed using DIN standards. This research explores the loading strength of the standardized three lobed (P3G) and four lobed (P4C) polygonal shafts and hubs manufactured from the same stock size, subjected to torsional bending load at various fits. Due to complex conformal contact (nonlinear model) between the shaft and the hub, there is no analytical solution and, therefore, Finite Element Method had been used to determine the stresses, after validating experimentally and using the DIN standard. From the analysis, it was found that the hub experienced greater stress than the shaft in all cases and the major stress in a polygonal shaft and hub connection is the contact stress. The clearance fit was found to be the most detrimental fit and the interference fit to be the most suitable for larger power transmission. Owing to its small normal axial stress and hub displacement, the P4C clearance fit has its use in low power transmission where a sliding fit is a requirement. The maximum von Mises stress was located below the surface for P4C and P3G clearance fit, suggesting failure from pitting and fretting on these shafts. All of the stresses were found to be higher in P4C than P3G for similar loading. Therefore, for general use, the P3G profile with an interference fit is recommended.


Sign in / Sign up

Export Citation Format

Share Document