Strengthening Analysis on Tenon-Mortise Joint of a Face Beam in Tai-He Palace in the Forbidden City in China

2011 ◽  
Vol 255-260 ◽  
pp. 1597-1602
Author(s):  
Qian Zhou ◽  
Wei Ming Yan

To protect Chinese ancient building,by theoretical calculation and finite element simulation sinkage as well as strengthening method on tenon-mortise joint of a face beam in Tai-He Palace in the Forbidden City were studied.2 strengthening methods were considered,by which calculation diagrams as well as finite element models for the beam were built and static analysis were carried out.Based on analysis results,displacement as well as stress distributions of the face beam before strengthened were obtained;Based on laws of cultural relics protection,the 2 strengthening methods were discussed and the more suitable one was selected.Results show that the main cause of sinkage of the face beam tenon relates closely to over great values of bending,tension as well as shearing stress values at the tenon-mortise joint position;The method that strengthening tenon-mortise joint by additional columns under the face beam may bring adverse effects to the substructure,however the method of using steel-wood composite system to strengthen the joint is more suitable which meets the demand of cultural relics protection.

2005 ◽  
Vol 492-493 ◽  
pp. 421-428 ◽  
Author(s):  
Rafael Schouwenaars ◽  
Víctor H. Jacobo ◽  
Sara M. Cerrud ◽  
Armando Ortiz

Journal bearings are graded systems with a metal-metal composite as the functional layer. Estimation of the microscale stress distributions is used to analyse the interaction between microstructure, material properties and damage mechanisms during wear. The analysis is executed by means of simple plane-strain finite element models mimicking experimentally observed microstructures. It is found that under realistic macrosstress conditions no tensile microstresses are induced in the triboalloy and that plastic flow is inhibited by the graded structure.


2017 ◽  
Vol 54 (1) ◽  
pp. 180-179 ◽  
Author(s):  
Raul Cormos ◽  
Horia Petrescu ◽  
Anton Hadar ◽  
Gorge Mihail Adir ◽  
Horia Gheorghiu

The main purpose of this paper is the study the behavior of four multilayered composite material configurations subjected to different levels of low velocity impacts, in the linear elastc domain of the materials, using experimental testing and finite element simulation. The experimental results obtained after testing, are used to validate the finite element models of the four composite multilayered honeycomb structures, which makes possible the study, using only the finite element method, of these composite materials for a give application.


Aerospace ◽  
2003 ◽  
Author(s):  
P. Smithmaitrie ◽  
J. G. DeHaven ◽  
K. Higuchi ◽  
H. S. Tzou

A piezoelectric curvilinear arc stator designed for an ultrasonic curvilinear motor is studied in this research. Design of piezoelectric curvilinear arc stator is proposed and its governing equations and vibration behavior are investigated. Then, analysis of forced vibration response or driving characteristics to harmonic excitations in the modal domain is conducted. Finite element modeling and analysis of the arc stator are also discussed. Analytical results of free vibration characteristics are compared favorably with the finite element results. Harmonic analyses of the three finite element models reveal changes of dynamic behaviors of three models and also imply operating frequencies with significant traveling wave component. Study of mathematical and finite element simulation results suggests that stable traveling waves can be generated to drive a motor on the proposed curvilinear arc stator system.


Author(s):  
Mostafa Habibi ◽  
Ramin Hashemi ◽  
Ahmad Ghazanfari ◽  
Reza Naghdabadi ◽  
Ahmad Assempour

Forming limit diagram is often used as a criterion to predict necking initiation in sheet metal forming processes. In this study, the forming limit diagram was obtained through the inclusion of the Marciniak–Kaczynski model in the Nakazima out-of-plane test finite element model and also a flat model. The effect of bending on the forming limit diagram was investigated numerically and experimentally. Data required for this simulation were determined through a simple tension test in three directions. After comparing the results of the flat and Nakazima finite element models with the experimental results, the forming limit diagram computed by the Nakazima finite element model was more convenient with less than 10% at the lower level of the experimental forming limit diagram.


2013 ◽  
Vol 652-654 ◽  
pp. 1966-1970
Author(s):  
Zhi Ren Han ◽  
Ze Bing Yuan

This paper is focus on two-Pass Deep Drawing Forming of conical axisymmetric parts, study on the finite element simulation and test of multi-Pass deep drawing part. It carry on the finite element analysis and calculation using the ANSYS/LS-DYNA software platform, analyzing the simulation results such as stress , strain distribution and formability by post-processing LSPOST software. It was done multi-Pass deep drawing test using a set of combined type mould. Based on the multi-Pass forming test by using a set of combined type mould, comparison of simulation and test data can be obtained through the forming limit diagram. The result of simulation and test is basically the same and both reflect the formability.


2014 ◽  
Vol 912-914 ◽  
pp. 806-809
Author(s):  
Ming Feng Zheng ◽  
Yue Chen ◽  
Ya Lin Yan

Established a finite element model of the school bus based on the Hyper Mesh, take a finite element simulation about the various parts of the school bus parameters such as stress, displacement and deformation under 5 conditions. Through the analysis of the school bus to identify conditions displacement of stress more concentrated area as well as in operation, by optimizing improve the local structure of these regions,improve the stress concentration and safety.


2012 ◽  
Vol 503-504 ◽  
pp. 696-699
Author(s):  
Qiao Li Wang ◽  
Yu Dong Zheng ◽  
Xin Liang ◽  
Ying Ling ◽  
Kun Qiao ◽  
...  

The interface of two low-density materials is bent in the forming process, which decreases the performance of materials. The theoretical analysis of the interface state in the forming process was taken to solve this problem, and the results indicated that the viscosity of the low-density material was very important to the interface state. The finite element simulation was also used to investigate the factors that affect the interface state. The results revealed the viscosity of material and the pressure were the main factors that affected the interface state; the stress and displacement at the interface could be accurately predicted by the finite element models. The ultimate aim was to modify the relevant parameters in a way that could obtain the required interface states.


2012 ◽  
Vol 581-582 ◽  
pp. 1036-1039
Author(s):  
Zan Wu Tan ◽  
Kong Lian Xu ◽  
Su Yun Hu

Nickel-plated steel sheet with high ductility and wonderful corrosion resistance, it has been widely used in industry. Stamp forming is a high-volume fabrication method for producing desired components. To determine the optimum values of the process parameters, it is essential to find their influence on the deformation behaviors of the steel and nickel. In this paper, finite element method (FEM) simulation was carried out to analyze some factors such as stress distribution, strain distribution, and fillet radius.


2020 ◽  
Vol 90 (15-16) ◽  
pp. 1837-1850 ◽  
Author(s):  
Rimantas Barauskas ◽  
Audrone Sankauskaite ◽  
Vitalija Rubeziene ◽  
Ausra Gadeikyte ◽  
Virginija Skurkyte-Papieviene ◽  
...  

This study presents the developed computational finite element models for transient heat transfer analysis in fabrics enriched by phase change materials along with efforts to provide validation on the basis of obtained experimental results. The environment-friendly butyl stearate is used as a phase change material. Its melting/heating absorption takes place in temperature range from 19℃ to 34℃, and the solidification/heat release occurs from 34℃ to 19℃. An important aspect in this analysis is the investigation of appropriateness of the material samples dimensions selected for effective heat capacity against temperature measurements. For this purpose, we used the combined experimental and finite element simulation-based analysis. A similar computational procedure enabled us to estimate the effective latent specific heat relationship of the fabric with phase change materials coating. The direct usage of differential scanning calorimetry (DSC) measurement-based specific heat relationships against temperature in the finite element models ensured good compliance of the computed results with the experiment. For validation of the developed computational models the infrared radiation heating-cooling experiments on fabrics with different deposits of a phase change material were performed. The noticeable influence of content of phase change materials for transient thermal behavior during heating-cooling cycles was determined. The experimental results have been compared against the finite element simulation results.


Sign in / Sign up

Export Citation Format

Share Document