Response of Modified Poly(lactic acid) to Microwave Radiation

2012 ◽  
Vol 488-489 ◽  
pp. 1393-1397
Author(s):  
Buranin Saengiet ◽  
Wasin Koosomsuan ◽  
Phassakarn Paungprasert ◽  
Rattikarn Khankrua ◽  
Sumonman Naimlang ◽  
...  

The frozen instant food packaging is the one of disposal product, which produced from petroleum–based plastic and has been accumulated worldwide pressuring on the environment. Therefore, the biodegradable plastics have become key candidates in this application. Poly(lactic acid) (PLA) was regarded as one of the most promising biodegradable polymer due to its good mechanical properties. The aim of this work was to study on the freezability and microwavability of PLA through crosslink reaction. For the improvement of the processibility of PLA, hyperbranched polymer (HBP) and polypropylene glycol (PPG) were used as plasticizer. Then the crosslinking of PLA was introduced by addition of peroxide (Luperox101) and triallyl isocyanurate (TAIC) in an internal mixer. Neat and modified PLA samples were characterized and testing for mechanical properties. From the gel content results, it was showed the increased value with the increased content of TAIC due to the denser crosslinked structure of polymer. This result was confirmed by FT-IR spectra. All modified PLA samples showed the higher %strain at break than neat PLA. In addition, impact resistance in frozen state showed the results of modified PLA with 0.1wt% of peroxide and 0.15 wt% of TAIC, was higher than neat PLA. Moreover, this composition also showed the highest microwave response and heat accumulation was suppressed when the specimen was immersed in the water during the test. From the results obtained in this work, the further investigation is needed to pursue and elucidate the relationship between the polymer structure and heat absorption when materials undergo the microwave radiation.

2014 ◽  
Vol 931-932 ◽  
pp. 57-62
Author(s):  
Rapeephun Dangtungee ◽  
Rapeeporn Srisuk ◽  
Suchart Siengchin

This research work was carried out on the production of rice bran/poly (lactic acid) (PLA) composites. The composition during the batch molding process included rice bran, PLA, glycerol, and magnesium stearate (mold released agent). Afterwards, the composition was molded by bio-compression at temperature of 170°C for 5 min, and a pressure range of 50-100 kg/cm3. The result showed that the composition of rice bran, PLA, and glycerol could be used in the formation of food packaging. Also the mechanical properties, such as compressive strength and hardness, were investigated. It could be concluded that the most appropriate formulation of rice bran packaging was 5 phr PLA and 3 phr glycerol and 2 phr magnesium stearate. Moreover, FTIR results indicated the non-toxic nature of this method of food packaging.


2017 ◽  
Vol 885 ◽  
pp. 298-302 ◽  
Author(s):  
Sándor Hajba ◽  
Tamás Tábi

Nowadays biopolymers are in the focus of many research and Poly (lactic acid) (PLA) is the one of the candidates of this field. The rigid behavior of PLA limits its application field, thus it is mostly used for rigid packing. Our research aim is to increase PLA ductility while keeping the biodegradability as much as possible. In our study, PLA was melt mixed in an internal mixer with 5, 10, 20 and 30 wt% natural rubber. It was possible to increase the toughness to a three time higher value compared to neat PLA while the tensile and flexural properties only decreased maximum 30%.


2013 ◽  
Vol 739 ◽  
pp. 38-41
Author(s):  
Yi Chen ◽  
Yue Peng ◽  
Wen Yong Liu ◽  
Guang Sheng Zeng ◽  
Xiang Gang Li ◽  
...  

Polycarbonate/poly (lactic acid)/(PC/PLA) blend is a kind of novel potential material for introducing the degradability of PLA to high performance PC. However, the bad compatibility between PC and PLA results in poor impact resistance and strength, which limits its applications. For resolving the problem, linear low density polyethylene (LLDPE) was added into blend to improve the mechanical properties, especially the toughness. Meantime, nanosized montmorillonite was also used as an additive for modifying the blend. The results showed that the the tensile and impact strength, the elongation at break of PC/PLA all be improved with the increase of LLDPE, the nanosized montmorillonite could also increase the strength of blends when the content is lower than wt5% of blends.


2018 ◽  
Vol 916 ◽  
pp. 19-23 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Nisarat Wimonsupakit ◽  
Sasithorn Kuhaudomlap

The objective of this study is to fabricate the polyoxymethylene (POM)/microcrystalline cellulose (MCC) and poly(lactic acid) (PLA)/MCC composites, and to compare the effect of MCC on the morphology and mechanical properties of POM and PLA. The polymer composites were prepared by melt mixing in an internal mixer and molded by compression molding. The MCC concentrations were 1, 3, 5, 7, 10, 15 and 10% by weight. From scanning electron microscopy study observes the fracture surface of POM and PLA composites is much rough and the roughness increases with increasing MCC content. This observation indicates MCC induces the ductile fracture characteristic of POM and PLA. The addition of MCC can improve the impact strength of PLA composite and improve Young’s modulus of both POM and PLA composites. While the tensile strength and strain at break decrease after adding MCC. In summary, MCC can enhance the morphology and mechanical properties of PLA composites is better than POM composites.


2021 ◽  
Vol 317 ◽  
pp. 333-340
Author(s):  
Mohammed Zorah ◽  
Izan Roshawaty Mustapa ◽  
Norlinda Daud ◽  
Nahida Jumah ◽  
Nur Ain Syafiqah Sudin ◽  
...  

Poly (lactic acid) (PLA) is a useful alternative to petrochemical commodity material used in such as in food packaging industries. Due to its inherent brittleness, low thermal stability, and poor crystallization, it needs to improve its properties, namely in terms of thermal and mechanical performance. The plasticized PLA composites reinforced with nanofiller were prepared by solvent casting and hot press methods. Thermal and mechanical properties, as well as the crystallinity study of these nanocomposites, were investigated to study the effect of tributyl citrate (TBC) and TiO2 on the PLA composites. The addition of TBC improved the flexibility and crystallinity of the composites. Reinforcement of TiO2 was found as a practical approach to improve the mechanical properties, thermal stability, and enhanced crystalline ability for plasticized PLA nanocomposites. Based on the results achieved in this study, the composite with 3.5% nanofiller (pPLATi3.5) presented the optimum set of mechanical properties and improved thermal stability.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mateus Garcia Rodolfo ◽  
Lidiane Cristina Costa ◽  
Juliano Marini

Abstract Poly(lactic acid), PLA, is a biodegradable polymer obtained from renewable sources with similar properties when compared with petroleum-based thermoplastics but with inherent brittleness. In this work, the use of thermoplastic polyurethane (TPU) as toughening agent was evaluated. PLA/TPU blends with 25 and 50 wt% of TPU were produced in an internal mixer without the use of compatibilizers. Their thermal, rheological, and mechanical properties were analyzed and correlated with the developed morphology. Immiscible blends with dispersed droplets morphology were obtained, and it was observed an inversion between the matrix and dispersed phases with the increase of the TPU content. The presence of TPU altered the elasticity and viscosity of the blends when compared to PLA, besides acting as a nucleating agent. Huge increments in impact resistance (up to 365%) were achieved, indicating a great potential of TPU to be used as a PLA toughening agent.


2020 ◽  
Vol 845 ◽  
pp. 45-50
Author(s):  
Thamolwan Udomkitpanya ◽  
Kawee Srikulkit

Poly(acrylic acid) (PAA) was grafted onto natural rubber (NR) to improve the compatibility of NR and poly(lactic acid) (PLA). Polymer blend between PLA and NR-g-PAA was prepared by an internal mixer. Fourier-transform infrared spectroscopy (FT-IR), tensile testing, impact testing, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were employed to determine the functional group, mechanical properties and thermal properties of blends, respectively. Results showed that the addition of NR-g-PAA significantly improved the elongation, impact strength and thermal stability of blends. The P70N30 was the optimum composition to obtain improved mechanical properties of PLA.


2013 ◽  
Vol 554-557 ◽  
pp. 1751-1756 ◽  
Author(s):  
Benoit Mallet ◽  
Khalid Lamnawar ◽  
Abderrahim Maazouz

The poly (lactic acid) (PLA), through its organic origin and its biodegradation properties, can be a good alternative to petroleum-based polymers. To this end, the forming process as well blown extrusion and foaming of PLA was investigated in this study as an alternative for the production of food packaging. Through this work, we present some promising routes to enhance its processing ability which presents several challenges mainly due to the poor shear and elongation properties of this biopolymer. To our knowledge, there is no paper dedicated to the investigation of foaming and/or blown extrusion of PLA that involves structural, rheological and thermo-mechanical properties. To achieve this objective, various formulations of PLA with multifunctionalized epoxy, nucleants and plasticizer were prepared and characterized on the basis of their linear viscoelasticity and extensional properties. The balance of chain extension and branching has been also investigated using solution viscosimetry, Steric exclusion chromatography (SEC) and rheology (relaxation spectrum, Van Gurp Palmen curves….). We pushed further by characterizing both the structure and thermo-mechanical properties of PLA formulations. On one hand, a batch foaming assisted with supercritical CO2 was achieved following a full characterization in physicochemical, rheological and thermal domain, The influence of the foaming parameters, the extent of chain modification as well as the contribution of crystallization on cell morphology was evaluated. Based on these parameters, structures ranging from micro to macro-cellular-cell were obtained. On the other hand, the stability maps of blown processing for neat and modified PLA were established at different die temperatures. We have achieved a great enhancement of the blown processing windows of PLA with high BUR (Blow Up Ratio) and TUR (Take Up Ratio) attained. We were able to demonstrate that a higher kinetic of crystallization can also be reached for chain-extended and branched PLA formulated with adequate amounts of nucleants and plasticizers. Induced crystallization during process was also demonstrated. Through this work, blown films with interesting thermo-mechanical and mechanical properties have been produced using an optimal formulation for PLA. References [1] A. Maazouz, K. Lamnawar, B. Mallet, Patent: C08L67/00; C08J5/10. FR2941702 (A1). (2010) [2] Y.-M. Corre, A. Maazouz, J. Duchet, J. Reignier, Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure. J. of Supercritical Fluids,58 (2011) 177-188 [3] B. Mallet, K. Lamnawar, A. Maazouz, Compounding and processing of biodegradable materials based on PLA for packaging applications: In greening the 21st century material’s world, Frontiers in Science and Engineering, 1-2(2011) 1-44 [4] B. Mallet, K. Lamnawar, A. Maazouz, Improvement of blown extrusion processing of PLA: structure-processing-properties relashionships. Polymer engineering and Science (To appear in 2013).


2018 ◽  
Vol 775 ◽  
pp. 13-19
Author(s):  
Sirirat Wacharawichanant ◽  
Kasana Chomphunoi ◽  
Chawisa Wisuttrakarn ◽  
Manop Phankokkruad

This work investigated the mechanical properties and phase morphology of poly(lactic acid) (PLA)/acrylonitrile-butadiene rubber (NBR) blends and nanocomposites, which prepared by melt blending in an internal mixer. The contents of NBR were 5, 10, 15 and 20 wt% and the content of organoclay was 3 phr. The impact test showed that the impact strength of PLA/NBR blends increased with an increase of NBR content and the impact strength of the blends was more than eight times by adding NBR 10 wt% when compared with neat PLA. The tensile test showed that Young’s modulus and tensile strength of PLA/NBR blends and nanocomposites decreased after adding NBR and organoclay. While the strain at break of the NBR blends increased with increasing NBR content. This result is attributed to the rubber phase in NBR in a cause the increment of elongation and elasticity in PLA/NBR blends. The morphology of PLA/NBR blends observed the fractured surface was rougher than that of pure PLA. This observation indicates that the addition of NBR in PLA can change the brittle fracture of PLA to ductile fracture, which has an effect to the strain at break or elongation of PLA. However, the morphology of the PLA/NBR blends were also observed the phase separation of the dispersed NBR phase and PLA matrix phase, and appeared the voids in a polymer matrix. The addition of organoclay had an effect slightly on the morphology of the blends. From X-ray diffraction, results found that PLA/organoclay and PLA/NBR/organoclay nanocomposites showed the intercalated structure, which PLA chains were inserted into the interlayer of clay due to the increase of d-spacing.


Sign in / Sign up

Export Citation Format

Share Document