Experimental Study on Rock Breaking with Impacting Water Jet by Modulation of Chaos

2012 ◽  
Vol 535-537 ◽  
pp. 1751-1754 ◽  
Author(s):  
Chang Liu Tian ◽  
Xue Li Cheng ◽  
Wei Wang

The experiment focused on the contrast with rock breaking effect of impacting water jet by modulation of chaos and common cavitation jet. Investigated the influences of various water jet parameters and conditions on rock breaking, such as standoff distance, pump pressure, transverse speed and erosion time and the mass loss and erosion depth were measured in the experiment. The results show that the impacting water jet by modulation of chaos can efficiently use the energy of water jet and increase ability in rock-breaking, which will have a wide application prospect in high pressure water jet technology field.

2015 ◽  
Vol 126 ◽  
pp. 295-299 ◽  
Author(s):  
Hailong Chen ◽  
Zhaomin Li ◽  
Zhihan Gao ◽  
Yuanyuan Sun

2020 ◽  
Vol 10 (18) ◽  
pp. 6294
Author(s):  
Fengchao Wang ◽  
Dapeng Zhou ◽  
Xin Zhou ◽  
Nanzhe Xiao ◽  
Chuwen Guo

A high-pressure water jet can break rock efficiently, which is of great potential to overcome the problems of a tunnel boring machine (TBM) in full-face hard rock tunnel digging, such as low digging efficiency and high disc cutter wear rate. Therefore, this paper presented a new tunneling method that is a TBM coupled with a high-pressure water jet. The rock failure mechanism under the coupled forces of a disc cutter and water jet was analyzed at first. Then, the finite element method (FEM) and smoothed particle hydrodynamics (SPH) method were used to establish a numerical model of rock broken by the disc cutter and water jet. Effects of parameters on rock breaking performance were studied based on the numerical model. Moreover, an experiment of the water jet cutting marble was carried out to verify the reliability of the numerical simulation. Results showed that the high-pressure water jet can increase the TBM digging efficiency and decrease the forces and wear rate of the disc cutter. The optimum nozzle diameter is 1.5 mm, while the optimum jet velocity is 224.5 m/s in this simulation. The results can provide theoretical guidance and data support for designing the most efficient system of a TBM with a water jet for digging a full-face hard rock tunnel.


2014 ◽  
Vol 952 ◽  
pp. 186-189
Author(s):  
Xian Zhong Yi ◽  
Song Lin Yi ◽  
Hui Shu ◽  
Yuan Qiang Ji ◽  
Sheng Zong Jiang

The technology of high pressure water jet in radial drilling has currently been used widely at home and abroad. A numerical simulation and analysis of the internal and external flow fields of jet nozzle will 1ay the foundation for the further study of high pressure water jet rock breaking. The physical and mathematical models of axial-symmetrical submerged jet rock breaking with single nozzle were established. And a numerical simulation of the internal and external flow fields of high pressure water jet nozzle in radial drilling was conducted with the Fluent software. The 1aws of the internal and external flow fields were analyzed in different jet distances and inlet flow rates.


2014 ◽  
Vol 6 ◽  
pp. 868041 ◽  
Author(s):  
Liu Songyong ◽  
Chen Junfeng ◽  
Liu Xiaohui

In the process of hard rock breaking, the conical pick bears great cutting force and wear, and the cutting efficiency is lower. Thus different combination ways of water jet and conical pick were proposed to solve this issue; for instance, water jet placed in the front of pick (JFP) and water jet through the center of pick (JCP) was researched by numerical simulation and experiments in this paper. First, the models of rock breaking were built based on SPH combined with finite element method. Then, the stress distribution of rock and the cut force of pick were analyzed when the rock broken by the conical pick assisted with the high pressure water jet. It indicates that the effect of the JCP on rock breaking is better than the JFP. At last, experiments about rock breaking with a conical pick and the JCP were conducted to verify the reliability of the simulation. It indicates that the rock breaking with the assistance of high pressure water jet cannot only reduce the pick force, but also increase the rock crushing volume.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096229
Author(s):  
Jinliang Zhang ◽  
Yongchang Li ◽  
Yuansheng Zhang ◽  
Fengwei Yang ◽  
Chao Liang ◽  
...  

The concept of tunnel boring machine (TBM) disc cutter rock breaking coupled with high-pressure water jets has been proposed to overcome the difficulties that occur when TBMs encounter extremely hard rocks. Thus, to meet actual engineering requirements for the TBM construction of tunnels as part of the Wan’anxi water diversion project in Longyan City (Fujian Province, China), experiments were conducted on high-pressure water jet-assisted TBM disc cutter rock breaking. By varying kerf depth and width under different water jet parameters and performing disc cutter rock breaking tests on rock surfaces with no kerf, single kerf, and double kerfs, the effects of different kerf depths on the disc cutter rock breaking process, load, and efficiency were examined. The test results showed that high-pressure water jets can generate the regular kerfs required for the coupled disc cutter rock breaking of granite. Employing the coupled rock breaking method also resulted in a decrease in specific energy and an approximately 40% decrease in the normal force of the disc cutter, thereby significantly improving rock breaking efficiency. These results provide key technical parameters for the design and manufacture of high-pressure water jet-assisted rock-breaking TBMs and serves as a reference for similar processes.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012094
Author(s):  
Zijian Dai ◽  
Hualin Liao ◽  
Ke Yang ◽  
Feng Sun

Abstract Natural gas hydrate is a research hotspot at present. However, the current exploitation technology can’t meet the demand of commercial exploitation of natural gas hydrate. In order to improve the efficiency of hydrate production, this paper believes that the idea of using high-pressure water jets for sandblasting perforation is expected to constitute an effective way to extract natural gas hydrates. The experimental study on sandblasting perforation and hydraulic slitting of simulated reservoirs was carried out by using large-scale ground fracturing equipment and full-scale hydraulic blasting perforating equipment. The driving pressure is analysed under the action of high-pressure water jet. The influence of diameter on the effect of simulated reservoir fracture. The results show that the diameter of the perforation increases with the increase of pressure; This experimental study can provide an experimental basis for the use of abrasive jet blasting perforating technology to improve the efficiency of natural gas hydrate production.


Sign in / Sign up

Export Citation Format

Share Document