Spray Characterization of Palm Olein/Diesel Blends under Various Injection Pressures

2013 ◽  
Vol 647 ◽  
pp. 645-653
Author(s):  
M.H.A.R Mantari ◽  
Y.A. Eldrainy ◽  
Mohammad Nazri Mohd Jaafar

The Sauter Mean Diameter (SMD) and spray cone angle are two important parameters that characterize spray performance. The objective of this study is to characterize palm olein/diesel blends spray in terms of spray angle and SMD under different injection pressures using a hollow cone pressure swirl atomizer. The physical properties of five diesel/palm olein blends, namely B5, B10, B15, B20 and B25 were measured and their spray characteristics were tested at injection pressures of 0.8MPa, 1.0MPa, and 1.2MPa under ambient atmospheric condition. The results were compared to spray established using petroleum diesel fuel. The SMD was measured using a phase Doppler analyzer (PDA). The spray cone angle was visualized using a digital single-lens reflex (DSLR) camera. The results indicated that petroleum diesel fuel had the widest cone angle followed by B5, B10, B15, B20 and B25 under the same injection pressure. Additionally, when the injection pressure increases from 0.8MPa to 1.2MPa, the spray cone angle widen accordingly. It is concluded that high content of palm olein in the palm biofuel blends increases viscosity and surface tension and hence higher value of SMD and narrower spray cone angle was generated. An increase in injection pressure resulted in smaller droplet SMD and wider spray cone angle.

Author(s):  
Jaclyn E. Johnson ◽  
Jeffrey D. Naber ◽  
Seong-Young Lee

Quantifying fuel spray properties including penetration, cone angle, and vaporization processes sheds light on fuel-air mixing phenomenon, which governs subsequent combustion and emissions formation in diesel engines. Accurate experimental determination of these spray properties is a challenge but imperative to validate computational fluid dynamic (CFD) models for combustion prediction. This study proposes a new threshold independent method for determination of spray cone angle when using Mie back-scattering optical diagnostics to visualize diesel sprays in an optically accessible constant volume vessel. Test conditions include the influence of charge density (17.6 and 34.9 kg/m3) at 1990 bar injection pressure, and the influence of injection pressure (990, 1370, and 1980 bar) at a charge density of 34.8 kg/m3 on diesel fuel spray formation from a multi-hole injector into nitrogen at a temperature of 100 °C. Conventional thresholding to convert an image to black and white for processing and determination of cone angle is threshold subjective. As an alternative, an image processing method was developed, which fits a Gaussian curve to the intensity distribution of the spray at radial spray cross-sections and uses the resulting parameters to define the spray edge and hence cone angle. This Gaussian curve fitting methodology is shown to provide a robust method for cone angle determination, accounting for reductions in intensity at the radial spray edge. Results are presented for non-vaporizing sprays using this Gaussian curve fitting method and compared to the conventional thresholding based method.


Author(s):  
Bong Woo Ryu ◽  
Seung Hwan Bang ◽  
Hyun Kyu Suh ◽  
Chang Sik Lee

The purpose of this study is to investigate the effect of injection parameters on the injection and spray characteristics of dimethyl ether and diesel fuel. In order to analyze the injection and spray characteristics of dimethyl ether and diesel fuel with employing high-pressure common-rail injection system, the injection characteristics such as injection delay, injection duration, and injection rate, spray cone angle and spray tip penetration was investigated by using the injection rate measuring system and the spray visualization system. In this work, the experiments of injection rate and spray visualization are performed at various injection parameters. It was found that injection quantity was decreased with the increase of injection pressure at the same energizing duration and injection pressure In the case of injection characteristics, dimethyl ether showed shorter of injection delay, longer injection duration and lower injected mass flow rate than diesel fuel in accordance with various energizing durations and injection pressures. Also, spray development of dimethyl ether had larger spray cone angle than that of diesel fuel at various injection pressures. Spray tip penetration was almost same development and tendency regardless of injection angles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255874
Author(s):  
Hua Xia

The internal flow and macroscopic spray behaviors of a fuel injection process were studied with schlieren spray techniques and simulations. The injection pressures(Pin)and ambient pressures(Pout)were applied in a wide range. The results showed that increasing the Pin is likely to decrease the flow performance of the nozzle. Furthermore, increasing the Pin can increase the spray tip penetration. However, the effect of Pin on the spray cone angle was not evident. The spray cone angle at an injection pressure of 160MPa was 21.7% greater than at a pressure of 100MPa during the initial spraying stage. Additionally, the discharge coefficient increased under high Pout, and the decrease in Pout can promote the formation of cavitation. Finally, increasing the Pout can decrease the penetration, while the spray angle becomes wider, especially at the initial spray stage, and high Pout will enhance the interaction of the spray and the air, which can enhance the spray quality.


2020 ◽  
Vol 40 (04) ◽  
Author(s):  
VO TAN CHAU

The diversity of alternative fuels and the corresponding variation in their physical and chemical properties, coupled with simultaneous changes in advanced techniques for CI-engine, needed to improve engine efficiency and emissions. Hydrotreated Vegetable Oil (HVO), seen as a promising substitution for petrol-diesel, and diesel fuel (mixed of 7% palm-biodiesel or B7) were analyzed on fuel properties. Then, the influence of these fuel properties on spray characteristics in constant volume combustion chamber were evaluated under conditions of single hole injector of 200m diameter, injection pressure of 100MPa, constant back pressure of 4.0MPa and energizing time of 2.5ms. The results show that HVO had smaller in viscosity (18.48%), density (5.52%), sulfur content, distillation under T50, T90 and higher in derived cetane index (27.2%), heating value (2.2%), respectively, compared to diesel. Spray characteristics of HVO had the same propensity with diesel fuel. HVO revealed a slightly shorter in penetration length (5%) during fully developed zone, a larger spray cone angle (from 0.2 to 1.1 degree wider in quasi-steady state). Both fuels had a similar maximum spray velocity reaching at 5mm to 10mm from nozzle orifice. Also observed was an increase in spray volume of HVO.


Author(s):  
Jaclyn E. Nesbitt ◽  
Jeffrey D. Naber ◽  
Seong-Young Lee

Quantifying fuel spray properties including penetration, cone angle, and vaporization processes sheds light on fuel-air mixing phenomenon which governs subsequent combustion and emissions formation in diesel engines. Accurate experimental determination of these spray properties is a challenge but imperative to validate computational fluid dynamic (CFD) models for combustion prediction. This study proposes a new threshold independent method for determination of spray cone angle when using Mie back-scattering optical diagnostics to visualize diesel sprays in an optically accessible constant volume vessel. Test conditions include the influence of charge density (17.6 and 34.9 kg/m3) at 1990 bar injection pressure, and the influence of injection pressure (990, 1370, and 1980 bar) at a charge density of 34.8 kg/m3 on diesel fuel spray formation from a multi-hole injector into nitrogen at a temperature of 100°C. Conventional thresholding to convert an image to black and white for processing and determination of cone angle is threshold subjective. As an alternative, an image processing method was developed which fits a Gaussian curve to the intensity distribution of the spray at radial spray cross-sections and uses the resulting parameters to define the spray edge and hence cone angle. This Gaussian curve fitting methodology is shown to provide a robust method for cone angle determination, accounting for reductions in intensity at the radial spray edge. Results are presented for non-vaporizing sprays using this Gaussian curve fitting method and compared to the conventional thresholding based method.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhengyan Guo ◽  
Yi Jin ◽  
Kai Zhang ◽  
Kanghong Yao ◽  
Yunbiao Wang ◽  
...  

Pressure swirl atomizers are widely used in gas turbine combustor; this paper is aimed at researching the effect of low ambient pressure (0.1 MPa to 0.01 MPa, lower than an atmosphere) on the spray cone angle of pressure swirl atomizer. The spray angle is captured by high-speed photography; then, an image post program is used to process the spray angle magnitude. A mathematical model of a single droplet’s movement and trajectory based on force analysis is proposed to validate the spray angle variation. The maximum variation of the spray cone angle, which is observed when fuel supply pressure drop through the atomizer is 1 MPa as the ambient pressure decreases from 0.1 MPa to 0.01 MPa, is found to be 23.9%. The experimental results show that the spray cone angle is expected to increase with the ambient pressure decrease; meanwhile, mathematical results agree well with this trend.


2012 ◽  
Vol 605-607 ◽  
pp. 143-146
Author(s):  
Ji Liang Wu ◽  
De Yuan Zhang ◽  
Xing Gang Jiang ◽  
Jian Lu Lv

A kind of single inlet swirl atomizer is set to adjust the inlet location and the length of the outlet for an optimization spray angle and uniformity in this literature.Stationary wave theory is used to describe the results of spray quality.Experimental and theoretical analysis show that using property machining process size, single inlet swirl nozzles can achieve the optimized quality of atomization (spray cone angle of 55 °and more, skewness of spray cone center below 5 ° ).


Author(s):  
Muthuselvan Govindaraj ◽  
Muralidhara Halebidu Suryanarayana ◽  
Vinod Kumar Vyas ◽  
Jeyaseelan Rajendran ◽  
Rajeshwari Natarajan ◽  
...  

Simplex atomizer is widely used in the liquid fuel combustion devices in aerospace and power generation industries. An experimental work was conducted, to study variation of SMD and droplet size distribution along axial and radial directions of the spray for different injection pressures. Malvern spray analyzer is used in the present investigation. Four different atomizer configurations of increasing atomizer constant (K) are examined using water and kerosene. Spray cone angle is measured for different configurations at different injection pressures (up to 30 bar) using image processing technique. In the case of atomizer with lower K, spray cone angle continuously increases with injection pressure. In the case of atomizer with higher K, initially spray cone angle increases significantly, but remains almost constant after 16 bar. Variation of SMD and droplet size distribution along axial direction of the spray is compared between water and kerosene spray. SMD variation along the axial direction of spray clearly shows the continuous brakup of droplets along axial direction of the spray. In the case of water spray, SMD rapidly decreases along the axial direction up to 30 mm from the orifice exit, and gradually decreases up to 120 mm. In the case of kerosene spray, SMD rapidly decreases along the axial direction up to 40 mm from the orifice exit, after that SMD fluctuates along the axial direction up to 100 mm from the orifice exit. This fluctuation is due to evaporation of smaller droplets (50 microns) of kerosene. Span also continuously fluctuates after 40 mm from the orifice exit in the case of kerosene spray. Variation of SMD and droplet size distribution along radial direction of the spray is compared for different injection pressure and configurations of simplex atomizer. Increase in injection pressure, increases the disruptive aerodynamic force, which reduces the radial peak value of SMD and widens the radial profile. With decrease in atomizer constant (K), swirl strength inside the swirl chamber increases, which in turn increases the spray cone angle. SMD variation along the radial direction of spray showed more uniform droplet diameter distribution for lower atomizer constant (K) configurations. Reducing the atomizer constant improves the atomization quality more effectively than increasing the injection pressure.


Author(s):  
Dieter Bohn ◽  
James F. Willie ◽  
Nils Ohlendorf

Lean gas turbine combustion instability and control is currently a subject of interest for many researchers. The motivation for running gas turbines lean is to reduce NOx emissions. For this reason gas turbine combustors are being design using the Lean Premixed Prevaporized (LPP) concept. In this concept, the liquid fuel must first be atomized, vaporized and thoroughly premixed with the oxidizer before it enters the combustion chamber. One problem that is associated with running gas turbines lean and premixed is that they are prone to combustion instability. The matrix burner test rig at the Institute of Steam and Gas Turbines at the RWTH Aachen University is no exception. This matrix burner is suitable for simulating the conditions prevailing in stationary gas turbines. Till now this burner could handle only gaseous fuel injection. It is important for gas turbines in operation to be able to handle both gaseous and liquid fuels though. This paper reports the modification of this test rig in order for it to be able to handle both gaseous and liquid primary fuels. Many design issues like the number and position of injectors, the spray angle, nozzle type, droplet size distribution, etc. were considered. Starting with the determination of the spray cone angle from measurements, CFD was used in the initial design to determine the optimum position and number of injectors from cold flow simulations. This was followed by hot flow simulations to determine the dynamic behavior of the flame first without any forcing at the air inlet and with forcing at the air inlet. The effect of the forcing on the atomization is determined and discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tao Zhang ◽  
Bo Dong ◽  
Xun Zhou ◽  
Linan Guan ◽  
Weizhong Li ◽  
...  

Partial replacement of kerosene by ethanol in a gas turbine is regarded as a good way to improve the spray quality and reduce the fossil energy consumption. The present work is aimed at studying the spray characteristics of kerosene-ethanol blends discharging from a pressure-swirl nozzle. The spray cone angle, discharge coefficient, breakup length, and velocity distribution are obtained by particle image velocimetry, while droplet size is acquired by particle/droplet imaging analysis. Kerosene, E10 (10% ethanol, 90% kerosene), E20 (20% ethanol, 80% kerosene), and E30 (30% ethanol, 70% kerosene) have been considered under the injection pressure of 0.1–1 MPa. The results show that as injection pressure is increased, the discharge coefficient and breakup length decrease, while the spray cone angle, drop size, and spray velocity increase. Meanwhile, the drop size decreases and the spray velocity increases with ethanol concentration when the injection pressure is lower than 0.8 MPa. However, the spray characteristics are not affected obviously by the ethanol concentration when the injection pressure exceeds 0.8 MPa. A relation to breakup length for kerosene-ethanol blends is obtained. The findings demonstrate that the adding of ethanol into kerosene can promote atomization performance.


Sign in / Sign up

Export Citation Format

Share Document