Research on the Step by Step Sliding Mode Variable Structure Adaptive Control

2013 ◽  
Vol 721 ◽  
pp. 591-600
Author(s):  
Xu Xiao Hu ◽  
Han Tao Chen ◽  
Gang Chen ◽  
Xin Rong Xu

In order to increase the control precision in meeting the robust request, a step by step sliding mode variable structure adaptive control strategy is presented in accordance with kind of two order time-invariant controlled object. Because the chatter amplitude is decreased when the system cuts in the position of equilibrium by the small peak-to-peak value, the mathematical model is firstly established and using the adaptive algorithm determined the control quantity to achieve the target value, then uses by the step by step method about, in the proper attention to both rapidity and robustness, reduces the peak-to-peak value deviation gradually which cuts, thus obtains the high control precision.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Pei Pei ◽  
Zhongcai Pei ◽  
Zhiyong Tang ◽  
Han Gu

A novel Fuzzy PID-Variable Structure Adaptive Control is proposed for position tracking of Permanent Magnet Synchronous Motor which will be used in electric extremity exoskeleton robot. This novel control method introduces sliding mode variable structure control on the basis of traditional PID control. The variable structure term is designed according to the sliding mode surface which is designed by system state equation, so it could compensate for the disturbance and uncertainty. Considering the chattering of sliding mode system, the fuzzy inference method is adopted to adjust the parameters of PID adaptively in real time online, which can attenuate chattering and improve control precision and dynamic performance of system correspondingly. In addition, compared with the traditional sliding mode control, this method takes the fuzzy PID control item to replace the equivalent control item of sliding mode variable structure control, which could avoid the control performance reduction resulted from modeling error and parameter error of system. It is proved that this algorithm can converge to the sliding surface and guarantee the stability of system by Lyapunov function. Simulation results show that Fuzzy PID-Variable Structure Adaptive Control enjoys better control precision and dynamic performance compared with traditional control method, and it improves the robustness of system significantly. Finally, the effectiveness and practicability of the algorithm are verified by the method of Rapid Control Prototyping on the semiphysical simulation test bench.


2014 ◽  
Vol 494-495 ◽  
pp. 1195-1201
Author(s):  
Bo Yang ◽  
Jun Miao ◽  
Yong Yang

This paper presents an attitude control method based on electric propulsion systems for the lunar lander that considers the important characteristics of nonlinearity and uncertainty of lunar soft landing maneuvers with large attitudes. The attitude control law is designed according to the terminal sliding mode variable structure control method. A soft lunar landing utilizing the proposed control method is simulated, and the results show that this attitude control system demonstrates superior global robustness, consumes less propellant, and can achieve higher precision than a conventional chemical propulsion-based control system. For a lunar lander with a pulse plasma thruster as the propulsion system, the attitude control precision of the system is 0.002 degrees when the attitude control force is 0.1 Newtons. When a conventional chemical, not electric, propulsion thruster is used, if the attitude control force decreases by one order of magnitude, then the control precision of the lunar lander decreases 10-fold. This study demonstrates that a terminal sliding mode variable structure control method combined with low level thrust electric propulsion can improve the precision of lunar soft landings.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1832
Author(s):  
Jinfeng Liu ◽  
Xin Qu ◽  
Herbert Ho-Ching Iu

Low-voltage and high-current direct current (DC) power supplies are essential for aerospace and shipping. However, its robustness and dynamic response need to be optimized further on some special occasions. In this paper, a novel rectification system platform is built with the low-voltage and high-current permanent magnet synchronous generator (PMSG), in which the DC voltage double closed-loop control system is constructed with the backstepping control method and the sliding mode variable structure (SMVS). In the active component control structure of this system, reasonable virtual control variables are set to obtain the overall structural control variable which satisfied the stability requirements of Lyapunov stability theory. Thus, the fast-tracking and the global adjustment of the system are realized and the robustness is improved. Since the reactive component control structure is simple and no subsystem has to be constructed, the SMVS is used to stabilize the system power factor. By building a simulation model and experimental platform of the 5 V/300 A rectification module based on the PMSG, it is verified that the power factor of the system can reach about 98.5%. When the load mutation occurs, the DC output achieves stability again within 0.02 s, and the system fluctuation rate does not exceed 2%.


Sign in / Sign up

Export Citation Format

Share Document