Evaluation of Climate Change Impact on Sustainability of Tailan Underground Reservoir in China

2013 ◽  
Vol 726-731 ◽  
pp. 3249-3255
Author(s):  
Emmanuel Kwame Appiah-Adjei ◽  
Long Cang Shu ◽  
Kwaku Amaning Adjei ◽  
Cheng Peng Lu

In order to ensure availability of water throughout the year in the Tailan River basin of northwestern China, an underground reservoir has been constructed in the basin to augment the groundwater resource and efficiently utilize it. This study investigates the potential impact of future climate change on the reservoir by assessing its influence on sustainability of recharge sources to the reservoir. The methods employed involved using a combined Statistical Downscaling Model (SDSM) and Long Ashton Research Station Weather Generator (LARS-WG) to downscale the climate variations of the basin from a global climate model and applying them through a simple soil water balance to quantify their impact on recharge to the reservoir. The results predict the current mean monthly temperature of the basin to increase by 2.01°C and 2.84°C for the future periods 2040-2069 and 2070-2099, respectively, while the precipitations are to decrease by 25% and 36% over the same periods. Consequently, the water balance analyses project the recharge to the reservoir to decrease by 37% and 49% for the periods 2040-2069 and 2070-2099, respectively. Thus the study provides useful information for sustainable management of the reservoir against potential future climate changes.

2014 ◽  
Vol 6 (3) ◽  
pp. 371-379 ◽  
Author(s):  
Auwal F. Abdussalam ◽  
Andrew J. Monaghan ◽  
Daniel F. Steinhoff ◽  
Vanja M. Dukic ◽  
Mary H. Hayden ◽  
...  

Abstract Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily populated northwest Nigeria with an annual incidence rate ranging from 18 to 200 per 100 000 people for 2000–11. Several studies have established that cases exhibit sensitivity to intra- and interannual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations of seven meteorological variables from an ensemble of 13 statistically downscaled global climate model projections from phase 5 of the Coupled Model Intercomparison Experiment (CMIP5) for representative concentration pathway (RCP) 2.6, 6.0, and 8.5 scenarios, with the numbers representing the globally averaged top-of-the-atmosphere radiative imbalance (in W m−2) in 2100. The results suggest future temperature increases due to climate change have the potential to significantly increase meningitis cases in both the early (2020–35) and late (2060–75) twenty-first century, and for the seasonal onset of meningitis to begin about a month earlier on average by late century, in October rather than November. Annual incidence may increase by 47% ± 8%, 64% ± 9%, and 99% ± 12% for the RCP 2.6, 6.0, and 8.5 scenarios, respectively, in 2060–75 with respect to 1990–2005. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as it is assumed that current prevention and treatment strategies will remain similar in the future.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Heliot Zarza ◽  
Enrique Martínez-Meyer ◽  
Gerardo Suzán ◽  
Gerardo Ceballos

Veterinaria México OA ISSN: 2448-6760Cite this as:Zarza H, Martínez-Meyer E, Suzán G, Ceballos G. Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Veterinaria México OA. 2017;4(3). doi: 10.21753/vmoa.4.3.390.Climate change may modify the spatial distribution of reservoirs hosting emerging and reemerging zoonotic pathogens, and forecasting these changes is essential for developing prevention and adaptation strategies. The most important reservoir of bovine paralytic rabies in tropical countries, is the vampire bat (Desmodus rotundus). In Mexico, the cattle industry loses more than $2.6 million US dollar, annually to this infectious disease. Therefore, we predicted the change in the distribution of D. rotundus due to future climate change scenarios, and examined the likely effect that the change in its distribution will have on paralytic rabies infections in Mexico. We used the correlative maximum entropy based model algorithm to predict the potential distribution of D. rotundus. Consistent with the literature, our results showed that temperature was the variable most highly associated with the current distribution of vampire bats. The highest concentration of bovine rabies was in Central and Southeastern Mexico, regions that also have high cattle population densities. Furthermore, our climatic envelope models predicted that by 2050–2070, D. rotundus will lose 20 % of its current distribution while the northern and central regions of Mexico will become suitable habitats for D. rotundus. Together, our study provides an advanced notice of the likely change in spatial patterns of D. rotundus and bovine paralytic rabies, and presents an important tool for strengthening the National Epidemiological Surveillance System and Monitoring programmes, useful for establishing holistic, long-term strategies to control this disease in Mexico.Figure 4. Modelled suitability for future distribution of Desmodus rotundus according to Global Climate Model GFDL-CM3 for two time periods (2050 and 2070), and two Representative Concentration Pathways (RCP 4.5 and 8.5). Left-hand column shows suitability values, with blue indicating more suitable conditions.


2020 ◽  
Author(s):  
Kajsa Parding ◽  
Oskar A. Landgren ◽  
Andreas Dobler ◽  
Carol F. McSweeney ◽  
Rasmus E. Benestad ◽  
...  

<p>We present the interactive web application GCMeval, available at https://gcmeval.met.no. The tool is a useful resource for climate services by illustrating how model selection affects representation of future climate change. GCMeval was developed in a co-design process engaging users. Based on a thorough analysis of user demands, needs and capabilities, two different user groups were defined: Data users with lots of experience with data processing and Product users with a strong focus on information products. The available data, information, and user interface in GCMeval are tailored to the requirements of the data users.</p><p>In the tool, the user can select all or a subset of models from the CMIP5 and CMIP6 ensembles and assign weights to different regions, seasons, climate variables, and skill scores. The tool provides visualizations of the spread of future changes in temperature and precipitation which allows the user to study how the sub-ensemble fits in relation to the full multi-model ensemble and to compare climate model results for different regions of the world. A ranking of individual model performance for recent past climate is also provided. The tool can be used to aid in model selection for climate or impact studies, or to illustrate how an already existing selection represents the range of possible future climate outcomes.</p>


2008 ◽  
Vol 5 (6) ◽  
pp. 4847-4866 ◽  
Author(s):  
P. Friedlingstein ◽  
P. Cadule ◽  
S. L. Piao ◽  
P. Ciais ◽  
S. Sitch

Abstract. Future climate change will have impact on global and regional terrestrial carbon balances. The fate of African tropical forests over the 21st century has been investigated through global coupled climate carbon cycle model simulations. Under the SRES-A2 socio-economic CO2 emission scenario of the IPCC, and using the Institut Pierre Simon Laplace coupled ocean-terrestrial carbon cycle and climate model, IPSL-CM4-LOOP, we found that the warming over African ecosystems induces a reduction of net ecosystem productivity, making a 20% contribution to the global climate-carbon cycle positive feedback. However, the African rainforest ecosystem alone makes only a negligible contribution to the overall feedback, much smaller than the one arising from the Amazon forest. This is first because of the two times smaller area of forest in Africa, but also because of the relatively lower local land carbon cycle sensitivity to climate change. This beneficial role of African forests in mitigating future climate change should be taken into account when designing forest conservation policy.


2020 ◽  
Author(s):  
Josue Martinez-Moreno ◽  
Andrew Hogg ◽  
Matthew England ◽  
Navid C. Constantinou ◽  
Andrew E. Kiss ◽  
...  

Abstract Oceanic eddies play a profound role in mixing tracers such as heat, carbon, and nutrients, thereby regulating regional and global climate. Yet, it remains unclear how global oceanic eddy kinetic energy has evolved over the past few decades. Furthermore, coupled climate model predictions generally fail to resolve oceanic mesoscale dynamics, which could limit their accuracy in simulating future climate change. Here we show a global statistically significant increase of the eddy activity using two independent observational datasets of mesoscale variability, one directly measuring currents and the other from sea surface temperature. Regions characterized by different dynamical processes show distinct evolution in the eddy field. For example, eddy-rich regions such as boundary current extensions and the Antarctic Circumpolar Current show a significant increase of 2% and 5% per decade in eddy activity, respectively. In contrast, most of the regions of observed decrease are found in the tropical oceans. Because eddies play a fundamental role in the ocean transport of heat, momentum, and carbon, our results have far-reaching implications for ocean circulation and climate, and the modelling platforms we use to study future climate change.


2020 ◽  
Author(s):  
Claas Teichmann ◽  
Daniela Jacob ◽  
Armelle Reca Remedio ◽  
Thomas Remke ◽  
Lars Buntemeyer ◽  
...  

<p>The Coordinated Output for Regional Evaluations (CORE) simulation ensemble is an effort of the WCRP CORDEX community to provide high resolution regional climate change information for the major inhabited areas of the world and thus to generate the solid scientific basis for further research related to vulnerability, impact, adaptation and climate services (VIACS). This is especially important in those areas in which so far only few high-resolution simulations or only global comparatively coarse simulations were available. The driving simulations were selected to cover the spread of high, medium and low climate sensitivity at a global scale. Initially, the two RCMs REMO and RegCM4 were used to downscale these data global climate model output to a resolution of 0.22° (about 25km) while it is intended that the CORDEX CORE ensemble can then be extended by additional regional simulations to further increase the ensemble size and thus the representation of possible future climate change pathways.</p> <p>The aim of this study is to investigate and document the climate change information provided by the current CORDEX CORE ensemble with respect to mean climate change in different regions and in comparison to previously existing global climate information, especially those global climate simulations used as boundary forcing for CORDEX CORE, but also in comparison to the entire AR5-GCM ensemble. The analysis focuses on the representation of the AR5-GCM range of climate change signals by the CORDEX CORE ensemble with respect to mean temperature and precipitation changes and corresponding shifts in the annual cycles in the new AR6 IPCC physical reference regions. This also provides an indication for CORDEX CORE suitability for VIACS applications in each region.</p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lisa G. Crozier ◽  
Brian J. Burke ◽  
Brandon E. Chasco ◽  
Daniel L. Widener ◽  
Richard W. Zabel

AbstractWidespread declines in Atlantic and Pacific salmon (Salmo salar and Oncorhynchus spp.) have tracked recent climate changes, but managers still lack quantitative projections of the viability of any individual population in response to future climate change. To address this gap, we assembled a vast database of survival and other data for eight wild populations of threatened Chinook salmon (O. tshawytscha). For each population, we evaluated climate impacts at all life stages and modeled future trajectories forced by global climate model projections. Populations rapidly declined in response to increasing sea surface temperatures and other factors across diverse model assumptions and climate scenarios. Strong density dependence limited the number of salmon that survived early life stages, suggesting a potentially efficacious target for conservation effort. Other solutions require a better understanding of the factors that limit survival at sea. We conclude that dramatic increases in smolt survival are needed to overcome the negative impacts of climate change for this threatened species.


2010 ◽  
Vol 6 (5) ◽  
pp. 674-677 ◽  
Author(s):  
Michael R. Kearney ◽  
Natalie J. Briscoe ◽  
David J. Karoly ◽  
Warren P. Porter ◽  
Melanie Norgate ◽  
...  

There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted −1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.


2016 ◽  
Vol 20 (5) ◽  
pp. 1947-1969 ◽  
Author(s):  
Marzena Osuch ◽  
Renata J. Romanowicz ◽  
Deborah Lawrence ◽  
Wai K. Wong

Abstract. Possible future climate change effects on dryness conditions in Poland are estimated for six climate projections using the standardized precipitation index (SPI). The time series of precipitation represent six different climate model runs under the selected emission scenario for the period 1971–2099. Monthly precipitation values were used to estimate the SPI for multiple timescales (1, 3, 6, 12, and 24 months) for a spatial resolution of 25 km for the whole country. Trends in the SPI were analysed using the Mann–Kendall test with Sen's slope estimator for each grid cell for each climate model projection and aggregation scale, and results obtained for uncorrected precipitation and bias corrected precipitation were compared. Bias correction was achieved using a distribution-based quantile mapping (QM) method in which the climate model precipitation series were adjusted relative to gridded precipitation data for Poland. The results show that the spatial pattern of the trend depends on the climate model, the timescale considered and on the bias correction. The effect of change on the projected trend due to bias correction is small compared to the variability among climate models. We also summarize the mechanisms underlying the influence of bias correction on trends in precipitation and the SPI using a simple example of a linear bias correction procedure. In both cases, the bias correction by QM does not change the direction of changes but can change the slope of trend, and the influence of bias correction on SPI is much reduced. We also have noticed that the results for the same global climate model, driving different regional climate model, are characterized by a similar pattern of changes, although this behaviour is not seen at all timescales and seasons.


1999 ◽  
Vol 54 (3) ◽  
pp. 132-137 ◽  
Author(s):  
P. McNamara

Abstract. In the Middle East, an area where pressure on water resources is intensified by political conflict and natural scarcity, the possibility of future climate change looms as yet another compounding factor. An integrated approach, taking economic, social, political and climate factors into consideration, is embodied in the CLIMSOC model. Before using global model data for a future period as input into the regional scale CLIMSOC model, the global climate model data must first be tested for the present period. The work summarised here examines monthly preeipitation data from a Hadley Centre Global Climate Model, comparing it to an observed climatology, for the present period 1961–1990. The differences between the GCM and observed data are examined with an eye toward systematic discrepancies among the different months, spatial patterns and overall quantitative differences in preeipitation. Finally, a glimpse at future preeipitation, as estimated by the global climate model, is presented in the context of the comparison results.


Sign in / Sign up

Export Citation Format

Share Document