Computation of Radial Electromagnetic Forces on Power Transformer LV Windings due to Short-Circuit Currents

2013 ◽  
Vol 732-733 ◽  
pp. 1069-1073 ◽  
Author(s):  
Han Bo Zheng ◽  
Jin Hua Han ◽  
Wei Wang ◽  
Xiao Gang Li ◽  
Yu Quan Li

The short-circuit electromagnetic force in radial direction induces critical mechanical stress on a power transformer. In this paper, the radial short-circuit forces which are exerted on transformer low voltage (LV) windings are investigated. Firstly, the mechanisms of leakage flux and short-circuit electromechanical forces in transformer coils are analyzed. Afterwards, based on IEC standards followed by short-circuit tests, calculations of radial short-circuit forces and evaluations of the ability to withstand short currents in LV windings are developed. The case studies and comparisons with improved measures show that the evaluation and calculation method is feasible and effective, and this method also offers three useful ways to strengthen the ability to withstand short-circuit currents for transformer windings.

2018 ◽  
Vol 18 (4) ◽  
pp. 162-167 ◽  
Author(s):  
Miroslav Gutten ◽  
Daniel Korenciak ◽  
Matej Kucera ◽  
Richard Janura ◽  
Adam Glowacz ◽  
...  

Abstract The authors describe experimental and theoretical analyses of faults of power transformer winding. Faults were caused by mechanical effect of short-circuit currents. Measurements of transformer were carried out in high-voltage laboratory. Frequency and time diagnostic methods (method SFRA - Sweep Frequency Response Analysis, impact test) were used for the analyses. Coils of transformer windings were diagnosed by means of the SFRA method and the time impact test. The analyzed methods had a significant sensitivity to a relatively small deformation of coil. In the analysis a new technique for analyzing the effects of short-circuit currents is introduced. This technique is developed for high-voltage transformers (different types of power). The proposed analyses show that it is necessary to analyze the value of short-circuit current. Short-circuit current represents a danger for the operation of the power transformer. The proposed approach can be used for other types of transformers. Moreover, the presented techniques have a potential application for fault diagnosis of electrical equipment such as: transformers and electrical machines.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2749 ◽  
Author(s):  
Karol Nowak ◽  
Jerzy Janiszewski ◽  
Grzegorz Dombek

The paper presents the layout of two opposing thyristors working as an Arc Eliminator (AE). The presented solution makes it possible to protect an electrical apparatus against the effects of an arcing fault. An Arc Eliminator is assumed to be a device cooperating with the protected apparatus. Thyristors were used because of their speed of operation and a relatively lower cost compared to other semiconductors with the same current-carrying capacity. The proposed solution, as one of the few currently available, makes it possible to eliminate the fault arc—both at short-circuit currents and current values to which overcurrent protections do not react. A test circuit was designed and made to study the effectiveness of the thyristor arc eliminator. A series of tests was carried out with variable impedance in the arc branch, including the influence of circuit inductance on arc time. It was found that the thyristor arc eliminator effectively protects devices powered from a low voltage power network against the effects of a fault or arc fault. The correctness of system operation for a wide range of impedance changes in the circuit feeding the arc location was demonstrated.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4952 ◽  
Author(s):  
Tadeusz Sobczyk ◽  
Marcin Jaraczewski

This paper deals with the problem of the leakage inductance calculations in power transformers. Commonly, the leakage flux in the air zone is represented by short-circuit inductance, which determines the short-circuit voltage, which is a very important factor for power transformers. That inductance is a good representation of the typical power transformer windings, but it is insufficient for multi-winding ones. This paper presents simple formulae for self- and mutual leakage inductance calculations for an arbitrary pair of windings. It follows from a simple 1D approach to analyzing the stray field using a discrete differential operator, and it was verified by the finite element method (FEM) calculation results.


Sign in / Sign up

Export Citation Format

Share Document