The Effect of Reinforcement Phase on the Microstructure of Al-SiC Nanocomposite Powder Prepared via Mechanical Alloying

2009 ◽  
Vol 83-86 ◽  
pp. 764-770
Author(s):  
Taha Rostamzadeh ◽  
H. Shahverdi ◽  
R. Sarraf-Mamoory ◽  
A. Shanaghi

Mechanical alloying is one of the most successful methods for the manufacturing of metal matrix nanocomposite powders. In this study, Al/SiC metal matrix composite (MMCp) powders with volume fractions of 5, 10, and 15 percent SiC were successfully obtained after milling the powder for a period of 25 hours at a ball to powder ratio of 15:1 using high energy planetary milling. The Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were conducted to investigate the lattice strain of the matrix phase and the microstructure of the nanocomposite powders after 1, 10, and 25 hours of milling time. Also, the morphology of the Al-5%SiC nanocomposite powder was investigated using transmission electron microscopy (TEM). The results show that with the increase of both milling time and the reinforcement phase volume fraction, the lattice strain increases and the average size of aluminum phase crystallites decreases. Eventually, after 25 hours of milling, the nanocomposite powders show a spherical-like morphology and SiC particles were distributed in an aluminum matrix with appropriate order.

2015 ◽  
Vol 830-831 ◽  
pp. 59-62
Author(s):  
Anshuman Patra ◽  
Swapan Kumar Karak ◽  
Shyamal Kumar Pabi

Nanostructured W70Cr30powders were produced by mechanical alloying (MA) of elemental tungsten (W), Chromium (Cr) powders in a high energy planetary ball-mill using tungsten carbide as grinding media and toluene as a process control agent. The crystallite size and lattice strain of the nanostructured powders at different milling time (0 h to 10 h) was calculated from X-ray diffraction patterns (XRD). The crystallite size of W in W70Cr30powder reduced from 100 μm at 0 h to 32.8 nm at 10 h of milling with increase in lattice strain of 0.43% at 10 h of milling. The lattice parameter of tungsten shows initial expansion of lattice upto 0.56% at 5 h of milling and contraction of lattice upto 0.93% at 10 h of milling. The scanning electron microscopy (SEM) micrograph also revealed mixed morphology of elemental W and Cr powders consist of spherical and elongated particles during mechanical alloying (0 h to 10 h). The dark-field transmission electron microscopy (TEM) observations indicated that the crystallite size (~30 nm) of W in W-Cr alloy in the as-milled powder is in good agreement with calculated crystallite size from XRD. Maximum solid solubility of 4.4 at.% Cr in W was found at 10 h of milling. The dislocation density increases from 6.75 (1016/m2) to 17.56 (1016/m2) with increase in the milling time from 0 h to 20 h. No cracks in the sintered pellets were visible under scanning electron microscope (SEM). Hardness and Elastic Modulus of sintered W70Cr30alloy determined by nanoindentation test are less compared to pure W.


2010 ◽  
Vol 660-661 ◽  
pp. 317-324 ◽  
Author(s):  
Grazziani Maia Candido ◽  
Vanessa Guido ◽  
Gilbert Silva ◽  
Kátia Regina Cardoso

Mixtures of AA2124 aluminum alloy powder and SiC particles at volume fractions of 10 vol.% and 20 vol.% were milled in a high energy planetary ball mill under an argon atmosphere, for times of 2.5h to 60 h, aiming to produce Al alloy-SiC nanocomposites. Optical microscopy (MO) and scanning electron microscopy (SEM) were used to evaluate the morphological and microstructural evolution of the powder composite, occurred during mechanical alloying. The crystallite size was determined using the Williamson-Hall method to analyze the X-ray peak broadening. It was observed that increasing the volume fraction of SiC, the mechanical alloying stages were accelerated: a finer composite powder was obtained at a shorter milling time as well as the morphology of the particles became more equiaxed. The XRD analysis showed the reduction of crystallite size of the aluminum alloy matrix with increasing milling time and that this effect is more pronounced with high volume fraction of SiC. The results show that the increase in the volume fraction of reinforcement particles increases the work hardening and fracture occurrence in the aluminum alloy powder during the milling, affecting the structural evolution of the composite.


2009 ◽  
Vol 283-286 ◽  
pp. 90-97 ◽  
Author(s):  
Ali Shokuhfar ◽  
Bahman Nasiri-Tabrizi

Mechanical alloying and mechanochemical treatment are the major powder processing techniques on the nano scale. In these processes a high energy ball mill has been applied to synthesize compounds and nanocomposites such as aluminum metal matrix nanocomposite, hydroxyapatite and bionanocomposites based on hydroxyapatite. These processes involve deformation, cold welding, fracturing, and rewelding of powder particles. Due to the applied mechanical forces, chemical reactions and phase transformations could also take place. In the present research work, the effects of milling time, milling media, and sonication process on the microstructures and morphology of the obtained materials were evaluated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The results indicate that increasing the milling time leads to an increased lattice strain and decreased crystallite sizes. Furthermore, the results show that the sonication process leads to the morphological improvement of nanocrystalline hydroxyapatite. The obtained data show that the nanocrystalline hydroxyapatite with low contamination and suitable morphology can be produced in Polyamide6 vials similar to stainless steel vials, therefore it seems that using polymeric and polymeric based nanocomposite vials with high strength and wear resistance could lead to a new way for the mass production of nanocrystalline hydroxyapatite with high performance, low contamination and low cost.


2020 ◽  
Vol 12 (2) ◽  
pp. 87-91
Author(s):  
Ranjan K. Bhuyan ◽  
D. Pamu ◽  
Basanta K. Sahoo ◽  
Ashish K. Sarangi

Background: Mg2TiO4 – based ceramics have proven their potentiality in the field of wireless communication systems. In the past, Mg2TiO4 ceramics was considered a quite optical response material in thin film form. Moreover, there is very few studies have been done whatever the proposed work in the present study. Objective: To prepare Mg2TiO4 nano-powders with the help of High Energy Ball Mill (HEBM) and intend to investigate its effect on crystal structure, microstructure and on thermodynamic behavior of MgO-TiO2 system. Methods: Mg2TiO4 ceramics were synthesized using Mechanical alloying method from high- purity oxides MgO and TiO2 (99.99%) of Sigma Aldrich (St. Louis, MO). Results: From the experimental studies it is observed that the powder’s particle size decreases with an increase of milling time. XRD analysis is carried out for phase confirmation of the mixed Mg2TiO4 powder. Further, the result also showed that there is structural changes occurred in the sample by high energy ball milling process, milled at different times. The nanocrystalline nature Mg2TiO4 powder was confirmed from microstructure taken by Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM). Further, differential thermal gravimetric analysis has been carried out to investigate the thermal behavior of milled Mg2TiO4 -powder (35 hours). Conclusion: In work, the effect of mechanical alloying on structural, microstructural and thermal properties of nanocrystalline Mg2TiO4 powders has been investigated systematically. The effect of milling time on particle size, crystal structure and the microstructure was studied using XRD, FE-SEM, TEM and DSC/TGA analysis. The microstructural analysis (FE-SEM and TEM) reveals the nanocrystallinity nature of MTO ceramics prepared by mechanical alloying method. The thermal decomposition behavior of the milled powders was examined by a Thermo-Gravimetric Analyzer (TGA) in argon atmosphere.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1789-1795
Author(s):  
AAMIR MUKHTAR ◽  
DELIANG ZHANG ◽  
BRIAN GABBITAS ◽  
CHARLIE KONG ◽  
PAUL MUNROE

Cu -(5-10) vol .% Al 2 O 3 nanocomposite powders were produced from a mixture of Cu powder and Al 2 O 3 nanopowder using a high energy mechanical milling (HEMM) route consisting of two stages. The microstructural evolution of the Cu – Al 2 O 3 nanocomposite powder particles (or granules) produced after first and the second stages of milling was studied using scanning electron microscopy (SEM), transmission electron microcopy (TEM), scanning transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) mapping. The study confirmed that homogenous dispersion of Al 2 O 3 nanoparticles in the Cu matrix was achieved after the first stage of milling and the relatively large Al 2 O 3 particles were further broken into smaller nanoparticles after the second stage of milling. The milled nanocomposite powders were also heat treated at 150, 300, 400 and 500°C for 1 hour, respectively, to determine the microstructural changes of the powder particles as a function of annealing temperature. It was found that after heat treatment at 150°C, the Cu grain sizes decreased due to recrystallisation, and increasing the annealing temperature to 300°C causes slight coarsening of the Cu grains. Further increasing the annealing temperature to 500°C caused significant coarsening of the Cu grains and the Al 2 O 3 nanoparticles. It also appeared that the coarsening of Cu grains in the composite powder particles after annealing at 500°C become less severe with increasing the volume fraction of Al 2 O 3 particles.


2021 ◽  
Vol 111 (1) ◽  
pp. 5-13
Author(s):  
A.E. Tomiczek

Purpose: of this paper is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and phase composition of CoFe2O4 cobalt ferrite. Design/methodology/approach: Cobalt ferrite (CoFe2O4) has been synthesised from a stoichiometric mixture of CoCo3 and α-Fe2O3 powders in a high energy planetary mill. Annealing at 1000°C for 6 hours after milling was used to improve the solid-state reaction. Calcinated samples were analysed by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The relationship between the milling time of powders, their microstructure, as well as their properties were evaluated. Particles size distribution and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) examination were also made. Findings: CoFe2O4 ferrites were successfully synthesized by mechanical alloying of α-Fe2O3 and CoCO3 powders. The powder particles had undergone morphological changes with the increasing milling time. However, the milling time does not affect the ferrite formation rate. It is expected that the improvement of fabrication parameters can further enhance the properties of cobalt ferrite presented in this work. Research limitations/implications: Contribute to research on the structure and properties of cobalt ferrites manufactured by mechanical alloying. Practical implications: The reactive milling and subsequently annealing is an efficient route to synthesise cobalt ferrite powder. However, using steel milling equipment risks powder contamination with iron and chromium from the vials and balls. Originality/value: The results of the experimental research of the developed ferrite materials served as the basis for determining material properties and for further investigation.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Cristina García-Garrido ◽  
Ranier Sepúlveda Sepúlveda Ferrer ◽  
Christopher Salvo ◽  
Lucía García-Domínguez ◽  
Luis Pérez-Pozo ◽  
...  

In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.


2007 ◽  
Vol 50 (3) ◽  
pp. 276-282 ◽  
Author(s):  
S. Kamrani ◽  
A. Simchi ◽  
R. Riedel ◽  
S. M. Seyed Reihani

2012 ◽  
Vol 496 ◽  
pp. 379-382
Author(s):  
Rui Song Yang ◽  
Ming Tian Li ◽  
Chun Hai Liu ◽  
Xue Jun Cui ◽  
Yong Zhong Jin

The Cu0.81Ni0.19 has been synthesized directly from elemental powder of nickel and copper by mechanical alloying. The alloyed Cu0.81Ni0.19 alloy powders are prepared by milling of 8h. The grain size calculated by Scherrer equation of the NiCu alloy decreased with the increasing of milling time. The end-product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)


2018 ◽  
Vol 27 (5-6) ◽  
Author(s):  
Pardeep Sharma

AbstractIn the present research work nickel (Ni) and titanium (Ti) elemental powder with an ostensible composition of 50% of each by weight were mechanically alloyed in a planetary high energy ball mill in diverse milling circumstances (10, 20, 30 and 60 h). The inspection exposed that increasing milling time leads to a reduction in crystallite size, and after 60 h of milling, the Ti dissolved in the Ni lattice and the NiTi (B2) phase was obtained. The lattice strain of ball milled mixtures augmented from 0.15 to 0.45 at 60 h milling. With increase in milling time the morphology of pre-alloyed powder changed from lamella to globular. Annealing of as-milled powders at 1100 K for 800 s led to the formation of NiTi (B19′), grain growth and the release of internal strain. The result indicated that this technique is a powerful and highly productive process for preparing NiTi intermetallic compounds with a nano-crystalline structure and appropriate morphology.


Sign in / Sign up

Export Citation Format

Share Document