Preparation, Characterization and Effectivity of N, Fe-TiO2 as a Visible Light Active Photocatalyst

2014 ◽  
Vol 894 ◽  
pp. 245-249 ◽  
Author(s):  
Arman Sikirman ◽  
Jagannathan Krishnan ◽  
Junaidah Jai ◽  
Senusi Faraziehan

Surface modification of the titanium dioxide by doping and co-doping with nitrogen and iron in order to make the photocatalyst active under visible light was investigated. Solgel method was adapted for the preparation of surface modified titanium dioxide, where tetra titanium isopropoxide, ammonium nitrate and ferric nitrate were used as precursors while maintaining the dopant concentration and calcination temperature at 0.75% and 600°C, respectively. The prepared photocatalyst samples were characterized by XRD, FE-SEM and FTIR in order to study their physical properties. The results from XRD confirmed that all prepared photocatalyst were of anatase phase. FE-SEM image analysis revealed the formation of fine particles and the FTIR analysis verified the presence of dopants. The effectivity of photocatalysts was tested by performing a standard batch photocatalytic degradation experiment with methylene blue as a model pollutant under visible light. The result showed that co-doped photocatalyst (0.75% N, 075% Fe-TiO2-600) yielded a maximum of 76% methylene blue degraded within three hours of irradiation time.

2014 ◽  
Vol 661 ◽  
pp. 63-67
Author(s):  
Jagannathan Krishnan ◽  
Elvana Nerissa ◽  
Abdul Hadi

Elemental doping of titanium dioxide with nitrogen and carbon were investigated in this study to get the modified photocatalyst working under visible light. Doped and codoped photocatalyst samples were synthesized by solgel method using titanium isopropoxide, ammonium nitrate and acetylacetone as precursors with the dopant concentration and calcination temperature fixed at 0.75% and 600°C respectively. Synthesized photocatalysts were characterized by XRD, FTIR and FESEM to check the existence of anatase phase, presence of dopants and formation of fine particles respectively. The effectiveness of the synthesized photocatalysts was measured by performing a standard batch photodegradation test with methylene blue as a model pollutant under ordinary visible light. The photocatalytic degradation efficiencies were found to be affected by the presence of dopant elements. The codoped photoctalyst (N-C-TiO2) exhibited the highest photocatalytic activity as it resulted in 91.3% degradation of methylene blue over 180 minutes of irradiation time.


2014 ◽  
Vol 575 ◽  
pp. 55-59 ◽  
Author(s):  
Arman Sikirman ◽  
Jagannathan Krishnan

Effect of calcination temperature on the synthesis of N, Fe codoped TiO2 for the photodegradation of methylene blue under ordinary visible lamps was investigated. The photocatalyst were prepared using solgel method where titanium isopropoxide was used as precursor of titania. The calcination temperatures were varied from 450 to 600°C. The prepared photocatalysts were characterized by using XRD, FE-SEM and FTIR to determine their physical properties. The results from XRD proved that photocatalysts calcined at 600°C possessed perfect properties in phase and crystal size. FE-SEM image analysis revealed the formation of the fine spherical particles and the FTIR analysis verified the presence of dopants at various calcination temperatures. The effectivity of photocatalysts was tested by performing a standard batch photocatalytic degradation experiment with methylene blue as a model pollutant under ordinary visible light. The result showed that N and Fe codoped photocatalyst calcined at 600°C (1.0 % N, Fe-TiO2-600) yielded a maximum of 80.50% methylene blue degraded within five hours of irradiation time.


2014 ◽  
Vol 997 ◽  
pp. 292-296 ◽  
Author(s):  
Jagannathan Krishnan ◽  
Elvana Nerissa Mohamad ◽  
Arman Sikirman

Carbon doped TiO2 was prepared by solgel method using titanium isopropoxide and acetylacetone as the precursors for titanium and carbon respectively. Systematic studies on the calcination temperature and its impact on surface properties and photocatalytic activities under visible light was investigated. The dopant concentration was fixed at 0.75% and the calcinations temperature was varied from 450 to 750oC.The prepared photocatalysts were characterized by XRD, UV-Vis DRS and FESEM in order to understand the relationship between the properties and its photocatalytic activities. The photocatalytic activity was measured by carrying out a standard photodegradation test under domestic illumination lamp with methylene blue as the model pollutant. With three hours of irradiation time, 69.7% of methylene blue was removed by C-TiO2 which was calcined at an optimum temperature of 600°C.


2013 ◽  
Vol 802 ◽  
pp. 252-256 ◽  
Author(s):  
Chokchai Kahattha ◽  
Naratip Vittayakorn ◽  
Wisanu Pecharapa

Titanium dioxide nanoparticles (TiO2) were successfully synthesized via a sonochemical-assisted process using titanium isopropoxide as the titanium sources and calcination process at 300-500 °C. The effect of sonication time and heat treatment temperature on structural and nanostructure properties of the nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM). The XRD and Raman results indicated that the crystalline of as-sonochemically synthesized TiO2 nanoparticles corresponded to anatase phase of TiO2 after sonication for 30 mim. The high quality crystalline anatase phase and increasing of crystalline size can be obtained after calcinations process.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 964
Author(s):  
Rattana Muangmora ◽  
Patiya Kemacheevakul ◽  
Patiparn Punyapalakul ◽  
Surawut Chuangchote

This work presents the development of titanium dioxide (TiO2) film immobilized on circular glass sheets for photocatalytic degradation of caffeine under ultraviolet C (UVC) irradiation. TiO2 was synthesized through the ultrasonic-assisted sol–gel method and immobilized on circular glass sheets by the doctor blade technique. Polyvinylpyrrolidone (PVP) was used to mix with the TiO2 precursor solution to enhance film adhesion on the glass surface. TiO2 film was mainly composed of anatase phase with a small amount of rutile phase. Caffeine removal was found to increase with increasing irradiation time. Caffeine (20 mg/L) in the synthetic wastewater could not be detected after 3 h of UVC irradiation. The reaction rate of caffeine degradation followed the pseudo-first-order model. The concentrated caffeine solutions required a longer irradiation time for degradation. The used TiO2-coated glass sheets could be easily separated from the treated wastewater and reusable. The caffeine removal efficiency of TiO2-coated glass sheets in each cycle maintained a high level (~100%) during fifteen consecutive cycles.


RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25314-25324 ◽  
Author(s):  
Lin Xiao ◽  
Li Youji ◽  
Chen Feitai ◽  
Xu Peng ◽  
Li Ming

A highly efficient and elaborately structured visible-light-driven catalyst composed of mesoporous TiO2 (MT) doped with Ag+-coated graphene (MT-Ag/GR) has been successfully fabricated by a sol–gel and solvothermal method.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 3242-3247 ◽  
Author(s):  
MASAHIRO KATOH ◽  
AKIHIRO IMAYAMA ◽  
NARISUKE MORI ◽  
TOSHIHIDE HORIKAWA ◽  
TAHEI TOMIDA

Introducing different atoms into TiO 2 crystal lattice is a famous method to improve photocatalytic activity of TiO 2 under visible-light irradiation. In this paper, Nitrogen ( N ) and fluorine ( F ) co -doped TiO 2 powders were prepared by mixing TiCl 3 solutions with ammonium fluoride ( NH 4 F ). In preparation, we used NH 3- H 2 O solution for adjustment of pH values (pH 2, 7, and 9) of mixed solution. X-ray diffraction (XRD) indicated N , F - TiO 2 powders prepared at pH7 and pH9 contained only anatase phase, but the powders prepared at pH2 contained both anatase and rutile phase. The result of XRD also indicated N , F - TiO 2 powders prepared at pH7 had the smallest crystallite size. We measured photocatalytic activity of prepared N , F - TiO 2 powders by the decomposition of methylene blue. N , F - TiO 2 powder prepared at pH7 and pH9 showed same high photocatalytic activity under ultraviolet light irradiation (peak wave length = 352 nm). Furthermore, under green light LED irradiation (wave length = 525 nm), a sample prepared at pH7 decomposed methylene blue more quickly than any other samples. As the result, N , F - TiO 2 prepared at pH7 had the best catalytic activity under both UV-light and visible light in the all of N , F - TiO 2 prepared and reference TiO 2 photocatalyst (ST-01 produced by Ishihara Co. Ltd).


2013 ◽  
Vol 295-298 ◽  
pp. 447-451 ◽  
Author(s):  
De Qiang Chen ◽  
Yang Li ◽  
Yi Qun Chen

In this paper graphene is used to improve absorption rate of nano-titanium dioxide under visible light, meanwhile titanium dioxide is doped with superparamagnetism nano-powder of γ-Fe2O3 to modify the recovery of the photocatalyst. Gradually the increasing content of grapheme promotes the removal efficiency and correspondingly. Excitation condition is reduced and the photocatalysis property under visible light is improved and recycle rate of the titanium dioxide is effective promoted after the dispose. The effect of photocatalytic degradation of methylene blue is used to evaluate the photocatalytic activity. The methylene blue degradation rate raised from 53.4% to 85.9% with the increasing graphene load from 5% to 20% under visible light. The degradation efficiency of methylene blue decreased to 15% without the graphene load. The recovery rate of the photocatalyst can achieve 95% above. Graphene oxide works as the electron acceptor and photosensitizer to efficiently enhance the dye photodecomposition.


Sign in / Sign up

Export Citation Format

Share Document