PIC/MCC Simulation of Glow Discharge in N2

2014 ◽  
Vol 960-961 ◽  
pp. 769-773
Author(s):  
Fang Cheng ◽  
Ai Hua Gao

The simulation of glow discharge in N2 in a needle-plane configuration with PIC/MCC method is presented. In the discharge channel the electric field driven by space charges is solved by PIC method, and various collisions between particles are described with MCC method. The electric field intensity, the electric potential and the net charge distribution in the discharge area are obtained. The numerical results are consistent with the corresponding features of glow discharge. This work can provide references to further study of glow discharge.

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3018 ◽  
Author(s):  
Christoph Jörgens ◽  
Markus Clemens

Many processes are involved in the accumulation of space charges within the insulation materials of high voltage direct current (HVDC) cables, e.g., the local electric field, a conductivity gradient inside the insulation, and the injection of charges at both electrodes. An accurate description of the time dependent charge distribution needs to include these effects. Furthermore, using an explicit Euler method for the time integration of a suitably formulated transient model, low time steps are used to resolve fast charge dynamics and to satisfy the Courant–Friedrichs–Lewy (CFL) stability condition. The long lifetime of power cables makes the use of a final stationary charge distribution necessary to assess the reliability of the cable insulations. For an accurate description of the stationary space charge and electric field distribution, an empirical conductivity equation is developed. The bulk conductivity, found in literature, is extended with two sigmoid functions to represent a conductivity gradient near the electrodes. With this extended conductivity equation, accumulated bulk space charges and hetero charges are simulated. New introduced constants to specify the sigmoid functions are determined by space charge measurements, taken from the literature. The measurements indicate accumulated hetero charges in about one quarter of the insulation thickness in the vicinity of both electrodes. The simulation results conform well to published measurements and show an improvement to previously published models, i.e., the developed model shows a good approximation to simulate the stationary bulk and hetero charge distribution.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2845
Author(s):  
Sun-Jin Kim ◽  
Bang-Wook Lee

The superimposed transient electric field generated by polarity reversal causes severe stress to the high-voltage direct current (HVDC) cable insulation. Especially for polymeric insulation materials, space charge accumulation is prominent, which strengthens local electric field intensity. In order to avoid the risk of dielectric breakdown resulting from an intensified electric field caused by space charge behavior, several numerical analyses have been conducted using the Bipolar Charge Transport (BCT) model. However, these studies have only considered a unidirectional electric field assuming only steady state operating conditions, and there are few works that have analyzed space charge behavior during transient states, especially for the polarity reversal period. In order to analyze the charge behavior under polarity reversal, it is necessary to establish the boundary condition considering the direction and intensity of the field. Therefore, in this paper, we proposed a modified model connecting the steady state to the polarity reversal state, and the transient electric field was investigated depending on the electric potential zero duration. Since space charge behavior is influenced by temperature, different load currents were considered. From the simulation results, it was observed that the capacitive field was dominant on the electric field distribution during the polarity reversal. In addition, the long electric potential zero duration and high load currents could contribute to form a homo-charge at the conductor within the time of polarity reversal, resulting in a noticeable decrease in the maximum electric field intensity.


Author(s):  
Zhifei Yang ◽  
Zhiye Du ◽  
Jiangjun Ruan ◽  
Shuo Jin ◽  
Guodong Huang ◽  
...  

Purpose The purpose of this paper is numerical calculation of total electric field in oil-paper insulation. Now, there is no effective method to consider the influence of space charges when calculating the total electric field distribution in the main insulation system of the valve-side winding of an ultra-high-voltage direct current converter transformer. Design/methodology/approach To calculate the total electric field in an oil-paper insulation system, a new simulation method in single-layer oil-paper insulation based on the transient upstream finite element method (TUFEM) is proposed, in which the time variable is considered. The TUFEM is used to calculate the total electric field in an oil-paper insulation system by considering the move law of space charges. The simulation method is verified by comparing the simulation results to the test data. The move law of space charges and distribution characteristics of the electric field under difference voltage values in single-layer oil-paper insulation were presented. Findings The results show that the TUFEM has an excellent accuracy compared with the test data. When carrier mobility is a constant, the time to reach the steady state is inversely correlated with the initial electric field intensity, and the distortion rate of the internal total electric field is positively correlated with the initial electric field intensity. Originality/value This paper provides an exploratory research on the simulation of space charge transport phenomenon in oil-paper and has guiding significance to the design of oil-paper insulation.


2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Haruo Ihori ◽  
Hayato Nakao ◽  
Masaki Takemura ◽  
Mitsuru Oka ◽  
Hyeon-Gu Jeon ◽  
...  

In order to diagnose the effectiveness of electrical insulation, it is necessary to obtain information regarding the electric field distribution in insulating materials. We have investigated the measurement of electric field vector distributions in liquid dielectrics using an original method. Electric field distributions could be measured in time intervals of milli-seconds by an optical system. In this study, the electric field in a liquid containing space charges was measured, and the change in the electric field caused by the charges in the liquid was examined. Moreover, the space charge distribution in the liquid was also studied. We believe that our study can aid a better understanding of the movement of charges in liquid dielectrics.


1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.


2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1157
Author(s):  
Yong Liu ◽  
Xingwang Huang

Ceramic outdoor insulators play an important role in electrical insulation and mechanical support because of good chemical and thermal stability, which have been widely used in power systems. However, the brittleness and surface discharge of ceramic material greatly limit the application of ceramic insulators. From the perspective of sintering technology, flash sintering technology is used to improve the performance of ceramic insulators. In this paper, the simulation model of producing the ceramic insulator by the flash sintering technology was set up. Material Studio was used to study the influence of electric field intensity and temperature on the alumina unit cell. COMSOL was used to study the influence of electric field intensity and current density on sintering speed, density and grain size. Obtained results showed that under high temperature and high voltage, the volume of the unit cell becomes smaller and the atoms are arranged more closely. The increase of current density can result in higher ceramic density and larger grain size. With the electric field intensity increasing, incubation time shows a decreasing tendency and energy consumption is reduced. Ceramic insulators with a higher uniform structure and a smaller grain size can show better dielectric performance and higher flashover voltage.


Sign in / Sign up

Export Citation Format

Share Document