Effect of Immersion/Freezing/Drying Cycles on the Hygrothermal and Mechanical Behaviour of Hemp Concrete

Author(s):  
Ferhat Benmahiddine ◽  
Rafik Belarbi

Hemp concrete is one of the most used bio-based materials in the construction industry due to its hygrothermal behaviour and its low environmental footprint. This is mainly due to the complexity of the microstructure of these materials and their highly breathable nature. However, their use remains limited due to the lack of databases and guarantees regarding of the evolution of their functional properties over time. In this paper, experimental investigation has been performed to answer this problematic. The aim is to investigate the influence of accelerated aging on the properties of this material through a succession of immersion/freezing/drying cycles. Materials (aged and reference) were characterized at the same relative humidity state in order to be able to compare the results and to highlight the effect of ageing on the properties of hemp concrete. Results revealed a significant change in the microstructure of this material. As a consequence, this induced significant changes in its hygrothermal and mechanical properties. An increase of 40% in water vapour permeability and decrease of 57% in compressive strength were observed after aging (07 cycles of immersion/freezing/drying).

The abundant availability of demolition waste from construction industry is leading towards a significant problem of disposal, land and air pollution. The natural aggregate resources are also depleting due to development of construction activities. An attempt is made in this study to convert this waste into wealth by substituting the recycled brick from demolition waste to granite aggregate in production of the concrete. The granite aggregate (GA) is replaced with recycled brick aggregate (RBA) by 25% of its weight to produce M15 and M20 grades of concrete. The granite aggregate concrete (GAC) and recycled brick aggregate concrete (RBAC) were subjected to different temperatures between 100 to 1000oC for a duration of 3 hours and the mechanical properties such as compressive strength and flexural strength were examined to assess its fire performance. The response of RBAC is better than GAC at each temperature. The study revealed that the residual strength increases with the increase in grade of concrete at all temperatures.


2019 ◽  
Vol 8 (4) ◽  
pp. 8336-8342

From decades it has been recognized that Geopolymer will considerably replace the role of cement in the construction industry. In general, Geopolymer exhibits the property of the peak compressive strength, minimal creep and shrinkage. In this current research paper, Geopolymer mortar is prepared by using GGBS and Fly ash. The mix proportions are of (100-60)%GGBS with Fly ash by 10% replacement. The alkali activators Na0H and Na2Sio3 are used in the study for two different molarities of 4&8. The ratio to Sodium silicates to sodium hydroxide is maintained from 1.5, 2, 2.5 & 3 were used. Mortars are prepared and studied the effect of molarities of alkali activators in their setting times and strengths


2019 ◽  
Vol 803 ◽  
pp. 262-266
Author(s):  
Osama Ahmed Mohamed ◽  
Maadoum M. Mustafa

Alkali activated slag (AAS) offers opportunities to the construction industry as an alternative to ordinary Portland cement (OPC). The production of OPC and its use contributes significantly to release of CO2 into the atmosphere while AAS is an industrial by-product that contributes much less to the environmental footprint that needs to be recycled if not landfilled. This paper outlines some of the key properties, merits and demerits of AAS when used as alternative to OPC. Competitive compressive strength of AAS concrete is amongst of the advantages of replacing cement with AAS while high shrinkage and carbonation levels are potential disadvantages.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012035
Author(s):  
Š Baránek ◽  
V Černý ◽  
G Yakovlev ◽  
R Drochytka

Abstract Electroconductive composites are modern materials that are commonly used in many industries such as construction industry and machine-building industry. For example, these materials can be useful as sensors for monitoring changes in constructions, shielding stray currents from electrification networks, shielding electromagnetic radiation in operating rooms, cathodic protection against moisture or overvoltage protection of buildings. The topic of this post is the research of electrically conductive silicate composites with graphite-based fillers. In this research will be tested composites with different ratio and types of graphite and monitor their electroconductive properties like impedance, and physical-mechanical properties like compressive and tensile strength. The post describes basic properties and interactions of silicate electrically conductive composites with graphite fillers. It was found that by adding 10 % wt. graphite into silicate composites, impedance is reduced by 50% and compressive strength by 40%. The flexural tensile strength depends mainly on the roughness of the particles, where the coarser flaky particles transfer the load better and increase the strength while very fine graphites reduce the flexural tensile strength. Furthermore, it has been found that very finely ground synthetic graphites are most suitable for achieving low impedance of composites.


2020 ◽  
Vol 13 (1) ◽  
pp. 32-38
Author(s):  
J. C. AMARAL JR ◽  
W. G. MORAVIA

Abstract Concrete is one of the materials most used by the construction industry. Reinforcing this material with fibers is a technique used to improve its mechanical properties. Steel and polymer fibers are the main types used in this application and there are few studies about the influence of polymer fibers on the thermal properties of concrete. In order to analyze this influence, the present work carried out thermal conductivity, thermal expansion, and compressive strength after exposure to a temperature of 200 °C on specimens made of concrete with addition of polypropylene (PP) fibers and concrete with addition of high modulus polyethylene (HMPE). It was also conducted thermogravimetric analysis (TGA) on PP and HMPE fibers. The results show that the addition of polymer fibers alters the thermal properties of the concrete, reducing its thermal expansion, for example.


Flyash is one of the largest emerging products in the construction industry. The fly ash is the by-product which is widely used in brick manufacturing plant. The flyash reduces the cement content and also overcomes several disadvantages. Simply, it is a step towards eco-friendly environment. Though the flyash brick has many advantages, it has lower strength at initial stages due to low hydration. In this study, the experimental investigation was carried out to find the optimum mix ratio of various compositions of fly ash bricks. The brick specimens were casted on different compositions of cement, flyash, eco-sand and various other admixtures. On addition of these admixtures the early compressive strength was also high and a quick hydration was observed. The tests were conducted on 3rd, 5th, 7th and 28th day. The results suggest that the maximum strength was obtained for the composition of fly ash, ecosand, cement and silica fume.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2680-2690
Author(s):  
Radosław Mirski ◽  
Adam Derkowski ◽  
Dorota Dziurka

Physical and mechanical properties were evaluated for industrial and laboratory boards intended to be used in the construction industry. The boards were subjected to accelerated aging tests including resistance to humidity in the conditions of cyclic test in accordance with EN 321 (2002), and determination of dimensional changes resulting from changes in relative humidity according to EN 318 (2002). The greatest changes were observed after one test cycle. Moreover, the boards made of fine chips demonstrated slightly higher resistance to the tested factors. Although laboratory boards showed a much lower density, their behavior following the exposure to the assessed factors was similar to that of industrial plates.


2014 ◽  
Vol 980 ◽  
pp. 91-96
Author(s):  
O.A. Johnson ◽  
Napiah Madzlan ◽  
Ibrahim B. Kamaruddin

In the recent years there has been an intensification of policies on sustainable construction materials in the construction industry. This environmental policy has brought about development of various sustainable materials in which Petrovege blocks is one of the outstanding products. This paper investigates the effect of curing age on the compressive strength of the product. Block samples were prepared by adding 8%, 9%, 10%, 11%, 12%, and 13% liquid content of the mixture of vegetable oil and crude oil sludge as a binder after the optimum liquid content has been established. The specimens were cured at different period of time of 48hrs, 72hrs, 96hrs, and 120hrs. Mechanical properties of the products were evaluated. Compressive strength of Petrovege samples varies from 5.31 N/mm2to 18.88 N/mm2indicating that the compressive strength increases with increase in curing age, while decrease in porosity leads to increased compressive strength for the stipulated curing ages. All samples satisfied the minimum requirements in terms of compressive strength, in accordance with all available standards.


The development of Self-compacting concrete (SCC) is a progressive milestone in the historical backdrop of real estate and construction industry bringing about transcendent use of SCC overall these days .In this study, the effects on the mechanical properties of the Self-compacting concrete (SCC) with partial replacement of cement by grinded fiber were studied, a mixture of equal proportion of grinded glass and basalt fiber of length 6mm was used. The volume fraction of the grinded glass and basalt mixture taken are 0%, 0.15%, 0.30%, 0.45% and 0.60% by weight of cement. In order to better understand the effect of the grinded fibers on the mechanical properties of SCC, cubes and cylinders were casted and tested for compressive strength, split tensile strength and flexural strength. For each test, data was collected and then compared with target (0%) fiber specimen. The study showed remarkable improvements in all properties of self-compacting concrete such as a compressive strength as well as enhanced durability.


2012 ◽  
Vol 571 ◽  
pp. 86-90
Author(s):  
Jian Cui

EPS light-aggregate concrete is a new kind of light aggregate concrete and is paid more attention by engineers in the field for superior thermal technology performance and prominent economic benefits, in which the Nano-SiO2 can not only fill the lacuna of concrete to improve the performance of concrete but also can improve the mechanics performance and the strength of concrete obviously. The compressive strength and flexural strength of EPS light-aggregate concrete in 3d and 28d were the maximum with 5% Nano-SiO2 in concrete. It is very significant to research the effect of nano-materials on EPS light-aggregate concrete performance, and its application in construction industry will bring great value to practical engineering and social economic benefits to our society.


Sign in / Sign up

Export Citation Format

Share Document