Comprehensive Characterization of Agricultural By-Products for Bio-Aggregate Based Concrete

Author(s):  
Herinjaka Haga Ratsimbazafy ◽  
Aurélie Laborel-Préneron ◽  
Camille Magniont ◽  
Philippe Evon

The valorization of available agricultural by-products is important for the development of bio-aggregate based concretes as eco-friendly solutions for building materials. However, their diversity requires to assess their potential of use in vegetal concretes. This study aims to propose simple and relevant multi-physical characterization methods for plant aggregates. Basic and complementary characterizations were carried out on hemp shiv as a reference plant aggregate, and nine by-products available in the South-West part of France, i.e., oleaginous flax shiv, sunflower pith and bark, coriander straw, wheat straw, wheat chaff, corn shuck, miscanthus stem and vine shoot. The basic characterizations performed were those recommended by the TC-RILEM 236 BBM, i.e., particle size distribution, bulk density, water absorption and thermal conductivity. Complementary characterizations have also been proposed, taking into account the possible environment of the binder and the vegetal concrete manufacturing method. The additional tests developed or adapted from previous research assess the following properties: the content of water-soluble compounds at pH 7 and 12, the dry density of plant aggregates compacted in wet state, the real water absorption after compaction and the compression behavior of these compacted aggregates. This complete characterization highlights the distinct behavior of the different agroresources and allows to correlate these characteristics to the use properties of hardened composites.

2021 ◽  
Vol 03 (02) ◽  
pp. 1-1
Author(s):  
Herinjaka Haga Ratsimbazafy ◽  
◽  
Aurélie Laborel-Préneron ◽  
Camille Magniont ◽  
Philippe Evon ◽  
...  

The use of plant aggregates obtained from agricultural co-products mixed with mineral binders to form eco-friendly insulating building materials has been initiated for a few years to bring environmentally friendly solutions to the construction sector. Several studies on different agro-resources have already been carried out, providing various information about the properties of plant aggregates and plant-based concrete. However, the characteristics of the agricultural co-product, which allow it to qualify as a plant aggregate for plant-based concrete, are not yet very clear despite the multitude of data, especially on hemp concrete. Therefore, it is important to gather numerous but very disparate pieces of information available in the literature concerning the properties of plant aggregates and their correlations with composites. This review is based on the results of 120 articles and aims to identify the characterization methods and the multi-physical properties of plant aggregates affecting those of plant-based concrete and to propose additional factors that could influence the properties of the composites. A total of 18 plant aggregates of different origins used for plant-based concrete have been listed in the literature. In France, hemp shiv is the most studied one, but its quantity is quite low unlike cereal or oilseed straws and wood transformation residues. With the existence of several characterization methods, properties like microstructure, particle size distribution, bulk density, water absorption capacity, and chemical composition of aggregates are easily and frequently determined. In contrast, data on the apparent density of particles, the skeleton density, and the hygro-thermal properties of aggregates are rare. The particle size, density, and porosity have been identified as important parameters influencing the properties of the composites. Other parameters related to the behavior of the aggregates under wet compaction and compression of their stacking can also predict the physical and mechanical properties of the obtained plant-based concrete. Dosages of the constituents should be preferred as formulation parameters for future studies assessing the impact of the aggregate properties on the composites.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Andrzej Ambroziak ◽  
Elżbieta Haustein ◽  
Maciej Niedostatkiewicz

This research aimed to determine the durability and strength of an old concrete built-in arch bridge based on selected mechanical, physical, and chemical properties of the concrete. The bridge was erected in 1925 and is located in Jagodnik (northern Poland). Cylindrical specimens were taken from the side ribs connected to the top plate using a concrete core borehole diamond drill machine. The properties of the old concrete were compared with the present and previous standard requirements and guidelines. The laboratory testing program consisted of the following set of tests: measurements of the depth of carbonated zone and dry density, water absorption tests, determination of concrete compressive strength and frost resistance, determination of modulus of elasticity, measurement of the pH value, determination of water-soluble chloride salt and sulfate ion content, and X-ray diffraction analyses. Large variations in the cylindrical compressive strength (14.9 to 22.0 MPa), modulus of elasticity (17,900 to 26,483 MPa), density (2064 to 2231 kg/m3), and water absorption (3.88 to 6.58%) were observed. In addition to the experiments, a brief literature survey relating to old concrete properties was also conducted. This paper can provide scientists, engineers, and designers an experimental basis in the field of old concrete built-in bridge construction.


2014 ◽  
Vol 803 ◽  
pp. 330-336 ◽  
Author(s):  
A.A. Kadir ◽  
Noor Amira Sarani ◽  
A.M. Leman

Clay brick is one of the building materials that have been used in the construction field for thousand years. It has been used as a major construction material because it can tolerate with severe weathering action, flexible properties and it is easy to handle. Many researchers have been incorporated waste material such as organic waste, waste treatment sludge, fly ash, cigarette butts, rice husk and processed waste tea into fired clay brick. This application gives an idea to use waste material that will give a minimum impact to the real environment. In this study, high calorific value waste such as cigarette butts (CBs) were incorporated into fired clay brick. Different percentages of CBs (0%, 2.5% and 5.0%) were added into the raw clay brick. All samples were fired up to 1050°C with different heating rates (1°C/min, 3°C/min and 5°C/min). Properties including compressive strength, dry density, firing shrinkage and water absorption are reported and discussed. The results show that the compressive strength of fired clay brick was obtained with 2.5% CBs of fired clay brick at 1°C/min heating rate compared to others. As for the density, it was reduced with higher percentages of CBs incorporated into the raw clays. From the results, water absorption was slightly increased when CBs were incorporated into clay brick. The results suggested that heating rates at 1oC/min is adequate to achieve optimum properties.


2020 ◽  
Vol 12 (17) ◽  
pp. 6864
Author(s):  
Diego Armando Arellano-Vazquez ◽  
Luca Moreschi ◽  
Adriana Del Borghi ◽  
Michela Gallo ◽  
Gustavo Islas Valverde ◽  
...  

This study shows the benefits of using the environmental product declarations (EPDs), based on ISO 14025:2013, for the configuration and conceptualization of new building materials. Using a quantitative evaluation on these phases of design, it allows one to create materials with lower impacts, in comparison with the existing ones. In this paper, it is proposed to evaluate the potentiality of this tool in the development of a panel from pineapple by-products from agroindustry, used as a thermal insulator. The issue of environmental sustainability was pursued, employing the assessment of the environmental impacts according to characterization methods defined by the International EPD® System. By comparing the possible compositions of the materials under development, with certified environmental declarations of commercial materials, it is possible to identify and select optimal compositions decreasing up to 98.28% of impacts in acidification potential or up to 99.38% for photochemical oxidation—with respect to traditional materials—already at the design stage, where the changes on the composition or the facilities decision have fewer complications.


2021 ◽  
Vol 13 (5) ◽  
pp. 2756
Author(s):  
Federica Vitale ◽  
Maurizio Nicolella

Because the production of aggregates for mortar and concrete is no longer sustainable, many attempts have been made to replace natural aggregates (NA) with recycled aggregates (RA) sourced from factories, recycling centers, and human activities such as construction and demolition works (C&D). This article reviews papers concerning mortars with fine RA from C&D debris, and from the by-products of the manufacturing and recycling processes of building materials. A four-step methodology based on searching, screening, clustering, and summarizing was proposed. The clustering variables were the type of aggregate, mix design parameters, tested properties, patents, and availability on the market. The number and the type of the clustering variables of each paper were analysed and compared. The results showed that the mortars were mainly characterized through their physical and mechanical properties, whereas few durability and thermal analyses were carried out. Moreover, few fine RA were sourced from the production waste of construction materials. Finally, there were no patents or products available on the market. The outcomes presented in this paper underlined the research trends that are useful to improve the knowledge on the suitability of fine RA from building-related processes in mortars.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


2016 ◽  
Vol 24 (4) ◽  
pp. 460-470 ◽  
Author(s):  
Xiaomeng Wang

Water-soluble polymers have been used in many applications in the oil sand and heavy oil industries, including drilling, enhanced oil recovery, tailings treatment, and water treatment. Because they are water soluble, residual polymer can remain with the aqueous phase, potentially leading to environmental impacts. Investigating the environmental fate of these water-soluble polymers is particularly important as they may be toxic to aquatic biota or terrestrial animal life. However, since polymers are somewhat complex because of their high molecular weight, there are many challenges in their measurement, especially in complex matrices. In this paper, polymers used in oilfield applications, particularly in the oil sand or heavy oil industries, are reviewed and various analytical methods for polymer characterization are compared.


Sign in / Sign up

Export Citation Format

Share Document