Magneto-Nanofluid Dynamics in Convergent-Divergent Channel and its Inherent Irreversibility

2017 ◽  
Vol 377 ◽  
pp. 95-110 ◽  
Author(s):  
Md. Sarwar Alam ◽  
Md. Abdul Hakim Khan ◽  
Oluwole Daniel Makinde

The effects of Cu-nanoparticles on the entropy generation of steady magnetohydrodynamic incompressible flow with viscous dissipation and Joule heating through convergent-divergent channel are analysed in this paper. The basic nonlinear partial differential equations are transformed into a system of coupled ordinary differential equations using suitable transformations which are then solved using power series with Hermite- Padé approximation technique. The velocity profiles, temperature distributions, entropy generation rates, Bejan number as well as the rate of heat transfer at the wall are presented in convergent-divergent channels for various values of nanoparticles solid volume fraction, Eckert number, Reynolds number and channel angle. A stability analysis has been performed for the shear stress which signifies that the lower solution branch is stable and physically realizable, whereas the upper solution branch is unstable. It is interesting to remark that the entropy generation of the system increases at the two walls as well as the heat transfer irreversibility is dominant there whereas the fluid friction irreversibility is dominant along the centreline of the channel.

2021 ◽  
Author(s):  
M R Acharya ◽  
P Mishra ◽  
Satyananda Panda

Abstract This paper analyses the augmentation entropy generation number for a viscous nanofluid flow over a non-isothermal wedge including the effects of non-linear radiation and activation energy. We discuss the influence of thermodynamically important parameters during the study, namely, the Bejan number, entropy generation number, and the augmentation entropy generation number. The mathematical formulation for thermal conductivity and viscosity of nanofluid for Al2O3 − EG mixture has been considered. The results were numerically computed using implicit Keller-Box method and depicted graphically. The important result is the change in augmentation entropy generation number with Reynolds number. We observed that adding nanoparticles (volume fraction) tend to enhance augmentation entropy generation number for Al2O3 − EG nanofluid. Further, the investigation on the thermodynamic performance of non-isothermal nanofluid flow over a wedge reveals that adding nanoparticles to the base fluid is effective only when the contribution of heat transfer irreversibility is more than fluid friction irreversibility. This work also discusses the physical interpretation of heat transfer irreversibility and pressure drop irreversibility. This dependency includes Reynolds number and volume fraction parameter. Other than these, the research looked at a variety of physical characteristics associated with the flow of fluid, heat and mass transfer.


Author(s):  
Alireza Rahimi ◽  
Aravindhan Surendar ◽  
Aygul Z. Ibatova ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

Purpose This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene. Design/methodology/approach The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations. Findings Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results. Originality/value The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 895
Author(s):  
Mohammad Abdollahzadeh Jamalabadi

The excellent thermal characteristics of nanoparticles have increased their application in the field of heat transfer. In this paper, a thermophysical and geometrical parameter study is performed to minimize the total entropy generation of the viscoelastic flow of nanofluid. Entropy generation with respect to volume fraction (<0.04), the Reynolds number (20,000–100,000), and the diameter of the microchannel (20–20,000 μm) with the circular cross-section under constant flux are calculated. As is shown, most of the entropy generation owes to heat transfer and by increasing the diameter of the channel, the Bejan number increases. The contribution of heat entropy generation in the microchannel is very poor and the major influence of entropy generation is attributable to friction. The maximum quantity of in-channel entropy generation happens in nanofluids with TiO2, CuO, Cu, and Ag nanoparticles, in turn, despite the fact in the microchannel this behavior is inverted, the minimum entropy generation occurs in nanofluids with CuO, Cu, Ag, and TiO2 nanoparticles, in turn. In the channel and microchannel for all nanofluids except water-TiO2, increasing the volume fraction of nanoparticles decreases entropy generation. In the channel and microchannel the total entropy generation increases by augmentation the Reynolds number.


2015 ◽  
Vol 19 (5) ◽  
pp. 1621-1632 ◽  
Author(s):  
Mahmoud Salari ◽  
Ali Mohammadtabar ◽  
Mohammad Mohammadtabar

In this paper, entropy generation induced by natural convection of cu-water nanofluid in rectangular cavities with different circular corners and different aspect-ratios were numerically investigated. The governing equations were solved using a finite volume approach and the SIMPLE algorithm was used to couple the pressure and velocity fields. The results showed that the total entropy generation increased with the increase of Rayleigh number, irreversibility coefficient, aspect ratio or solid volume fraction while it decreased with the increase of the corner radius. It should be noted that the best way for minimizing entropy generation is decreasing Rayleigh number. This is the first priority for minimizing entropy generation. The other parameters such as radius, volume fraction, etc are placed on the second priority. However, Bejan number had an inverse trend compared with total entropy generation. As an exception, Bejan number and total entropy number had the same trend whenever solid volume fraction increased. Moreover, Nusselt number increased as Rayleigh number, solid volume fraction or aspect ratio increased whereas it decreases with the increase of corner radius.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
D. R. V. S. R. K. Sastry ◽  
A. S. N. Murti ◽  
T. Poorna Kantha

The problem of heat transfer on the Marangoni convection boundary layer flow in an electrically conducting nanofluid is studied. Similarity transformations are used to transform the set of governing partial differential equations of the flow into a set of nonlinear ordinary differential equations. Numerical solutions of the similarity equations are then solved through the MATLAB “bvp4c” function. Different nanoparticles like Cu, Al2O3, and TiO2 are taken into consideration with water as base fluid. The velocity and temperature profiles are shown in graphs. Also the effects of the Prandtl number and solid volume fraction on heat transfer are discussed.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
R. K. Nayak ◽  
S. Bhattacharyya ◽  
I. Pop

A numerical investigation of mixed convection due to a copper–water nanofluid in an enclosure is presented. The mixed convection is governed by moving the upper lid of the enclosure and imposing a vertical temperature gradient. The transport equations for fluid and heat are modeled by using the Boussinesq approximation. A modified form of the control volume based SIMPLET algorithm is used for the solution of the transport equations. The fluid flow and heat transfer characteristics are studied for a wide range of Reynolds number and Grashof number so as to have the Richardson number greater or less than 1. The nanoparticle volume fraction is considered up to 20%. Heat flow patterns are analyzed through the energy flux vector. The rate of enhancement in heat transfer due to the addition of nanoparticles is analyzed. The entropy generation and Bejan number are evaluated to demonstrate the thermodynamic optimization of the mixed convection. We have obtained the enhancement rate in heat transfer and entropy generation in nanofluid for a wide range of parameter values.


2018 ◽  
Vol 15 (5) ◽  
pp. 604-613
Author(s):  
Essma Belahmadi ◽  
Rachid Bessaih

Purpose The purpose of this study is to analyze heat transfer and entropy generation of a Cu-water nanofluid in a vertical channel. The channel walls are maintained at a hot temperature Tw. An up flow penetrates the channel at a uniform velocity v0 and a cold temperature T0 (T0 < Tw). The effects of Reynolds number Re, Grashof number Gr and solid volume fraction ϕ on streamlines, isotherms, entropy generation, friction factor, local and mean Nusselt numbers are evaluated. Design/methodology/approach The Cu-water nanofluid is used in this study. The software Ansys-fluent 14.5, based on the finite-volume method and SIMPLE algorithm, is used to simulate the mixed convection problem with entropy generation in a vertical channel. Findings The results show that the increase of Reynolds and Grashof numbers and solid volume fraction improves heat transfer and reduces entropy generation. Correlations for the mean Nusselt number and friction factor in terms of Reynolds number and solid volume fraction are obtained. The present results are compared with those found in the literature, which reveal a very good agreement. Originality/value The originality of this work is to understand the heat transfer and entropy generation for mixed convection of a Cu-water nanofluid in a vertical channel.


2019 ◽  
pp. 469-469
Author(s):  
Ahmer Mehmood ◽  
Sajid Khan ◽  
Muhammad Iqbal ◽  
Sufian Munawar

We consider a heat transfer augmentation problem to minimize the entropy generation by assuming boundary layer flow of nanofluid over a moving wavy surface. The nanofluid demonstrates great potential in enhancing the heat transfer process due to its high thermal conductivity. The famous Tiwari and Das model has been used in the present article. Two types of water based nanofluids containing Cu and Fe3O4 nanoparticles are considered. Moreover, the surface texture is taken to be sinusoidal wavy to improve the thermal contact. The governing equations are transformed into a system of non-similar partial differential equations by using suitable dimensionless variables and solved by the Keller-Box method. The effects of involved parameters like amplitude wavelength ratio, group parameters, and volume fraction on the total entropy number and the Bejan number are analyzed graphically. It is showed Fe3O4 base nanofluid is more effective to lessen the entropy production as compared to Cu base nanofluid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sumera Dero ◽  
Hisamuddin Shaikh ◽  
Ghulam Hyder Talpur ◽  
Ilyas Khan ◽  
Sayer O. Alharbim ◽  
...  

AbstractIn this paper, the heat transfer properties in the three-dimensional (3D) magnetized with the Darcy-Forchheimer flow over a shrinking surface of the $$Cu + Al_{2} O_{3} /$$ C u + A l 2 O 3 / water hybrid nanofluid with radiation effect were studied. Valid linear similarity variables convert the partial differential equations (PDEs) into the ordinary differential equations (ODEs). With the help of the shootlib function in the Maple software, the generalized model in the form of ODEs is numerically solved by the shooting method. Shooting method can produce non-unique solutions when correct initial assumptions are suggested. The findings are found to have two solutions, thereby contributing to the introduction of a stability analysis that validates the attainability of first solution. Stability analysis is performed by employing if bvp4c method in MATLAB software. The results show limitless values of dual solutions at many calculated parameters allowing the turning points and essential values to not exist. Results reveal that the presence of dual solutions relies on the values of the porosity, coefficient of inertia, magnetic, and suction parameters for the specific values of the other applied parameters. Moreover, it has been noted that dual solutions exist in the ranges of $$F_{s} \le F_{sc}$$ F s ≤ F sc , $$M \ge M_{C}$$ M ≥ M C ,$$S \ge S_{C} ,$$ S ≥ S C , and $$K_{C} \le K$$ K C ≤ K whereas no solution exists in the ranges of $$F_{s} > F_{sc}$$ F s > F sc , $$M < M_{c}$$ M < M c , $$S < S_{c}$$ S < S c , and $$K_{C} > K$$ K C > K . Further, a reduction in the rate of heat transfer is noticed with a rise in the parameter of the copper solid volume fraction.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
S. Dutta ◽  
S. Bhattacharyya ◽  
I. Pop

Abstract A numerical study on the mixed convection of Al2O3–water nanofluid in a lid-driven inclined square enclosure partially heated from below is performed based on Buongiorno's two phase model. The velocity of the nanoparticles relative to the base fluid is considered due to thermophoresis and Brownian diffusion. The thermophysical properties of the nanofluid are assumed to be dependent on temperature as well as the nanoparticle volume fraction. A control volume method over a staggered grid arrangement is used to discretize the governing equations. The discretized equations of two-dimensional continuity, momentum, energy, and volume fraction are solved through a pressure-correction-based semi-implicit method for pressure linked equations (SIMPLE) algorithm. The effects of relevant parameters such as nanoparticle diameter (25 nm ≤ dp ≤ 90 nm), Richardson number (0.1≤Ri≤5), nanoparticle bulk volume fraction (0 ≤φb≤ 0.05) on the mixed convection of the nanofluid is studied by considering the inclination angle of the enclosure to vary between 0 deg and 60 deg. The entropy generation as well as the Bejan number is evaluated to illustrate the thermodynamic optimization of the mixed convection. Both the heat transfer and entropy generation are higher in the nanofluid compared to the clear fluid and the rate of increment in entropy generation remains lower than the rate by which the heat transfer is augmented in the nanofluid. We find that due to the presence of the Brownian diffusion and thermophoresis in the nonhomogeneous model, a higher heat transfer is yielded as compared to the homogeneous model. The discrepancy between the homogeneous and nonhomogeneous models is significant when the mixed convection is dominated by the shear force. When the mixed convection is dominated by the thermal buoyancy, an increase in positive inclination angle of the enclosure creates a significant increment in the heat transfer.


Sign in / Sign up

Export Citation Format

Share Document