Effect of Formulation Variables for the Production of WGA-Grafted, Levodopa-Loaded PLGA Nanoparticles

Author(s):  
Sema Arisoy ◽  
Tansel Comoglu

Levodopa is used for the treatment of Parkinson’s disease (PD) for the last few decades. However, adverse reactions such as dyskinesia, somnolence, nausea, itching, rash, as well as the need for frequent dosing and low bioavailability problems affect the success of the treatment. To prevent side effects caused by conventional therapy, a nanoparticular drug delivery system has been developed, in which receptors are constantly stimulated, and the frequency of dosing is reduced. In this study, levodopa was loaded in Poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) which modified with Wheat Germ Agglutinin (WGA) To increase the effectiveness of levodopa, reduce its side effects and apply to the nasal area which is an alternative way for brain targeting with lower doses. To obtain the optimum levodopa loaded PLGA nanoparticles, the effect of some formulation variables such as polyvinyl alcohol (PVA) concentration, homogenization speed, polymer amount and molecular weight, and levodopa content on the entrapment efficiency (EE) and particle size of the nanoparticles were investigated. Besides these variables, the effect of different parameters on the WGA binding constant was also searched. In addition to in vitro release studies, Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectrophotometer (FT-IR), and Transmission electron microscopy (TEM) analysis were used in the characterization of nanoparticles. Among all formulations, A2 and A8a which was produced with different molcular weights of PLGA, different added levodopa amounts and with different homogenization speeds were chosen as optimum formulations due to their sustained release properties and the ability to release 80 % of their drug content.WGA binding constant was found 78.20 % for A8a-1 and 95 % for A2-1. In this study, we aimed to determine the effect of different formulation parameters on the development of levodopa loaded and WGA grafted PLGA nanoparticles and on the quality characteristics of nanoparticle formulations such as particle size, zeta potential, and EE. In this paper, our results are demonstrated for a better understanding of the effect of process parameters on the development of nanoparticle-based drug delivery systems by using the double-emulsion solvent evaporation technique and on WGA binding of drug-loaded PLGA nanoparticles.

Author(s):  
VIRAG A. SHAH ◽  
JAYVADAN K. PATEL

Objective: The goal of the current study was to investigate the possible use of solid lipid nanosuspension (SLNs) as a drug delivery method to boost doxorubicin (DOX) brain-targeting performance after intranasal (i. n.) administration.  Methods: 33 factorial design was applied for optimization by using lipid concentration, surfactant concentration, and High-speed homogenizer (HSH) stirring time as dependent variables, and their effect was observed on particles size, Polydispersity index (PDI), and entrapment efficiency.  Results: With the composition of Compritol® 888 ATO (4.6 % w/v), tween 80 (1.9 % w/v), and HSH stirring time, the optimized formula DOX-SLNs prepared (10 min). Particle size, PDI, zeta potential, entrapment efficiency, percent in vitro release were found to be 167.47±6.09 nm, 0.23±0.02, 24.1 mV, 75.3±2.79, and 89.35±3.27 percent in 24 h, respectively, for optimized formulation (V-O). No major changes in particle size, zeta potential, and entrapping efficiency were found in the stability studies at 4±2 °C (refrigerator) and 25±2 °C/60±5% RH up to 3 mo.  Conclusion: Following the non-invasive nose-to-brain drug delivery, which is a promising therapeutic strategy, the positive findings confirmed the current optimized DOX-loaded SLNs formulation.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 129
Author(s):  
Hassan Shah ◽  
Asadullah Madni ◽  
Muhammad Muzamil Khan ◽  
Fiaz-ud-Din Ahmad ◽  
Nasrullah Jan ◽  
...  

The current study aimed to develop pH-responsive cisplatin-loaded liposomes (CDDP@PLs) via the thin film hydration method. Formulations with varied ratios of dioleoyl phosphatidylethanolamine (DOPE) to cholesteryl hemisuccinate (CHEMS) were investigated to obtain the optimal particle size, zeta potential, entrapment efficiency, in vitro release profile, and stability. The particle size of the CDDP@PLs was in the range of 153.2 ± 3.08–206.4 ± 2.26 nm, zeta potential was −17.8 ± 1.26 to −24.6 ± 1.72, and PDI displayed an acceptable size distribution. Transmission electron microscopy revealed a spherical shape with ~200 nm size. Fourier transform infrared spectroscopic analysis showed the physicochemical stability of CDDP@PLs, and differential scanning calorimetry analysis showed the loss of the crystalline nature of cisplatin in liposomes. In vitro release study of CDDP@PLs at pH 7.4 depicted the lower release rate of cisplatin (less than 40%), and at a pH of 6.5, an almost 65% release rate was achieved compared to the release rate at pH 5.5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin solution in MDA-MB-231 and SK-OV-3 cell lines, and fluorescence microscopy also showed enhanced cellular internalization. The acute toxicity study showed the safety and biocompatibility of the developed carrier system for the potential delivery of chemotherapeutic agents. These studies suggest that CDDP@PLs could be utilized as an efficient delivery system for the enhancement of therapeutic efficacy and to minimize the side effects of chemotherapy by releasing cisplatin at the tumor site.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1853-1863
Author(s):  
Shubhra Rai ◽  
Gopal Rai ◽  
Ashish Budhrani

Lipospheres represent a novel type of fat-based encapsulation system produced for the topical drug delivery of bioactive compounds. The goal of this research work was to develop lipospheres, including ketoprofen applied for topical skin drug delivery. Ketoprofen lipospheres were formulated by melt emulsification method using stearic acid and Phospholipon® 90G. The lipospheres were analysed in terms of particle size and morphology, entrapment efficiency, Differential scanning calorimetry, In-vitro drug release, In-vivo (Anti-inflammatory activity). Outcomes of research revealed that particle size was found to be 9.66 µm and entrapment efficiency 86.21 ± 5.79 %. In-vivo, the study of ketoprofen loaded lipospheres formulation shows a higher plain formulation concentration in plasma (5.61 mg/mL). For dermis, ketoprofen retention was 27.02 ± 5.4 mg/mL for the lipospheres formulation, in contrast to that of the plain formulation group (10.05 ± 2.8 mg/mL). The anti-inflammatory effect of liposphere drug delivery systems was assessed by the xylene induced ear oedema technique and compared with marketed products. Finally, it seems that the liposphere drug delivery system possesses superior anti-inflammatory activity as compared to the marketed product gel consistencies. Liposphere may be capable of entrapping the medicament at very high levels and controlling its release over an extended period. Liposphere furnishes a proper size for topical delivery as well as is based on non-irritating and non-toxic lipids; it’s a better option for application on damaged or inflamed skin.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


2020 ◽  
Vol 17 ◽  
Author(s):  
Pranav Shah ◽  
Jayant Sarolia ◽  
Bhavin Vyas ◽  
Priti Wagh ◽  
Kaul Ankur ◽  
...  

Background: Intranasal administration of biodegradable nanoparticles has been extensively studied for targeting the drug directly to CNS through olfactory or trigeminal route bypassing blood brain barrier. Objective: The objective of the present study was to optimize Clonazepam loaded PLGA nanoparticles (CLO-PNPs) by investigating the effect of process variables on the responses using 32 full factorial design. Methods: Effect of two independent factors-amount of PLGA and concentration of Poloxamer 188, were studied at low, medium and high levels on three dependent responses-%Entrapment efficiency, Particle size (nm) and %cumulative drug release at 24hr. Results: %EE, Particle size and %CDR at 24hr of optimized batch was 63.7%, 165.1 nm and 86.96% respectively. Nanoparticles were radiolabeled with 99mTc and biodistribution was investigated in BALB/c mice after intranasal & intravenous administrations. Significantly higher brain/blood uptake ratios and AUC values in brain following intranasal administration of CLO-PNPs indicated more effective brain targeting of CLO. Higher brain uptake of intranasal CLO-PNPs was confirmed by rabbit brain scintigraphy imaging. Histopathological study performed on goat nasal mucosa revealed no adverse response of nanoparticles. TEM image exhibited spherical shaped particles in nano range. DSC and XRD studies suggested Clonazepam encapsulation within PLGA matrix. The onset of occurrence of PTZ-induced seizures in rats was significantly delayed by intranasal nanoparticles as compared to intranasal & intravenous CLO-SOL. Conclusion: This investigation exhibits rapid rate and higher extent of CLO transport in brain with intranasal CLO-PNPs suggesting a better option as compared to oral & parenteral route in management of acute status epilepticus.


2019 ◽  
Author(s):  
Pingping Wu ◽  
Qing Zhou ◽  
Huayun Zhu ◽  
Yan Zhuang ◽  
Jun Bao

Abstract Recurrence and metastasis are the shortcomings of the clinical treatment of colon cancer. Finding an efficacy strategy for the treatment of colon cancer is important. In recent years, PLGA has been shown to have potential as a broad therapeutic drug delivery system. this study aimed to design a dual-loaded nanoparticles drug delivery system to overcome the limitations of chemotherapeutic drugs in colon cancer therapy. We developed epidermal growth factor (EGF) functionalized poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-loaded with 5-fluorouracil (5Fu) and perfluorocarbon (PFC) (EGF-PLGA@5Fu/PFC) for target therapy of colon cancer. EGF-PLGA@5Fu /PFC NPs were estimated to have an average size of 200 nm with a 5Fu-loading efficiency of 7.29%. In vitro release profile exhibited a pH-responsive release. CCK-8, Hoechst33342 staining and flow cytometry assays were performed to investigate the functions of EGF-PLGA@5Fu/PFC NPs in SW620 cells. Targeted EGF-PLGA@5Fu/PFC NPs also exhibited higher cellular uptake than non-targeted NPs in colon cancer cells. EGF-PLGA@5Fu/PFC NPs were found to have the best efficiency on cell viability suppression and apoptosis induction in SW620 cells. In xenograft mice, EGF-PLGA@5Fu/PFC NPs had the best suppressive effects on tumor growth compared with 5Fu, PLGA@5Fu and PLGA@5Fu/PFC NPs. The results of histopathological analysis further indicated that EGF-targeted NPs were the most efficient on tumor growth inhibition. Mechanically, the data demonstrated the improved therapeutic outcomes were owing to the fact that PFC could relieve tumor hypoxia via transporting oxygen to the tumor. We creatively constructed a biocompatible nanodrug delivery system and functionalized nanoparticles may provide new potential for selective delivery of chemotherapy drugs to cancers.


2017 ◽  
Vol 1 (2) ◽  
pp. 01-04
Author(s):  
Saritha Garrepalli

Prepared nanoparticles were characterized in terms of particle size, scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). In-vitro release studies were performed in phosphate buffer saline pH 7.4 at 37˚±0.5˚C for 1month. The mean particle size of obtained nanoparticles was 150-400 nm and was apparently spherical in shape, with smooth surface. DSC is done for the stability test for pure drug and sample. The thermogram of drug has not shifted for in the formulation compare to pure drug thermogram hence, the stability of formulation is not changed. FT-IR studies demonstrated that the drug was not changed in the formulation during the fabrication process.The encapsulation efficiency was about 48%. The Anastrozole-BSA nanoparticles exhibit a most interesting release profile with small initial burst followed by slower and controlled release.


2021 ◽  
Vol 12 (4) ◽  
pp. 482-487
Author(s):  
Bharat Patel ◽  
Satyendra Kumar Tripathi ◽  
Sandhya Pathak ◽  
Sandeep Shukla ◽  
Archna Pandey

Plasmodium falciparum is one of the most common resistant Plasmodium species responsible for high rates of morbidity and mortality in malaria patients. Clinical guidelines for the management of Plasmodium falciparum include the use of a dose of primaquine phosphate resulting intolerable side effects. Therefore, the aim of this work was to formulate primaquine phosphate-loaded PLGA nanoparticles by using a nanoprecipitation method in order to increase its bioavailability to minimize drug intake. This leads to reduced toxicity and better therapeutic efficacy of the drug. The synthesized nanoparticles were characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transformed infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD). TEM analysis revealed the presence of smooth spherical-shaped nanoparticles. The drug DLS analysis confirmed the presence of negatively charged nanoparticles with particle size in the range of 100-400 nm. The drug release study was performed to analyses different kinetic models like zero-order model, first-order model, Higuchi model, Hixson-Crowell model, and Korsmeyer-Peppas model.


Author(s):  
Gambhire Makarand ◽  
Vaishali Gambhire ◽  
Bhalekar Mangesh

The preparation and physico-chemical evaluation of rifam-picinloaded poly-(lactic-co-glycolic) acid (PLGA) nanoparticles as per 32 Factorial Design are presented. PLGA (X1) and PVA (Polyvinyl alcohol) solution (X2) as a stabilizing agent were used as independent variables where Particle size (PS) (Y1), Entrapment Efficiency (EE) (Y2) and % Drug Release at 12th h (REL)(Y3) were taken as dependant variables. Rifampicin nanoparticles were prepared by multiple emulsion solvent evaporation method. The results showed the method as reproducible, easy and efficient is the entrapment of drug as well as formation of spherical nanoparticles. Effect of polymer concentration was also evaluated with respect to their % drug entrapment efficiency. The in vitro release studies indicated the rifampicin-loaded PLGA nanoparticles provide sustained drug release over a period of 12h. The optimum batch was R3 which shown particle size 326 nm, 61.70 % EE and 57. 50% drug release at 12th h. Infrared spectroscopy analysis revealed that there was no known chemical interaction between drug and polymer. Hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of rifampicin nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document