Synthesis and Characterization of Phosphoric Silica Catalyst from Bamboo Leaves for Production of Triacetin

Author(s):  
Renita Manurung ◽  
Muhammad Dedi Anggreawan ◽  
Alwi Gery Agustan Siregar

In this research, the bamboo leaf shows promise as an alternative raw material for silica production. This study investigated the performance of heterogeneous catalyst prepared from silica derived bamboo leaf ash after that impregnated with phosphoric acid at ratio various. The catalyst was characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Brunauer Emmet Teller (BET) and Barrett, Joyner and Halenda (BJH) method and triacetin product analyzed by GC-MS. The optimum condition phosphoric silica catalyst was obtained at phosphoric silica molar ratio of 1:2 and employed in the acetylation of glycerol, respectively. As result, 24 % selectivity for triacetin was obtained in the presence of catalytic amount 5%, molar ratio 1:9 at 100 °C for 4 hours. Bamboo leaf derived phosphoric silica calcined showed high potential to be used as an easy to prepare and high-performance solid catalyst for industrial scale.

2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2020 ◽  
Vol 851 ◽  
pp. 25-31
Author(s):  
Markus Diantoro ◽  
Ahmad Al Ittikhad ◽  
Thathit Suprayogi ◽  
Nasikhudin ◽  
Joko Utomo

The development of energy storage devices encourages the sustainability of research on basic materials of supercapacitor technology. SrTiO3 is one of metal oxide called as titanate alkali metal ATiO3 (A = Ba, Sr, Ca). This material shows an excellent dielectric constant, thus expected to be potential as raw material of supercapacitor. In this work, boron was used as a dopant on the SrTiO3 system to modify its local structure and enhance the electrical properties. Synthesis SrTi1-xBxO3 was carried out using a solid-state reaction method followed by the sintering process in various molar ratio. The microstructure of SrTi1-xBxO3 compound was identified by X-ray Diffraction with Cu-Kα. XRD pattern identified the presence of SrTi1-xBxO3 phase with a slight change in the lattice parameters. I-V measurement confirmed that the electrical conductivity increased gradually up to 16.04 Ω-1cm-1. For investigating their application for electrode materials, CV was employed and it presents that the specific capacitance and energy density of x = 0.08 were 5.488 Fg-1 and 0.110 Jg-1.


2020 ◽  
Vol 58 (1) ◽  
pp. 3-18 ◽  
Author(s):  
Jonathan B. Schneider ◽  
David M. Jenkins

ABSTRACT Formation of the feldspathoid sodalite (Na6Al6Si6O24·2NaCl) by reaction of nepheline (NaAlSiO4) with NaCl-bearing brines was investigated at 3 and 6 kbar and at a constant temperature of 750 °C to determine the brine concentration at which sodalite forms with variation in pressure. The reaction boundary was located by reaction-reversal experiments in the system NaAlSiO4–NaCl–H2O at a brine concentration of 0.16 ± 0.08 XNaCl [= molar ratio NaCl/(NaCl + H2O)] at 3 kbar and at a brine concentration of 0.35 ± 0.03 XNaCl at 6 kbar. Characterization of the sodalite using both X-ray diffraction and infrared spectroscopy after treatment in these brines indicated no obvious evidence of water or hydroxyl incorporation into the cage structure of sodalite. The data from this study were combined with earlier results by Wellman (1970) and Sharp et al. (1989) at lower (1–1.5 kbar) and higher (7–8 kbar) pressures, respectively, on sodalite formation from nepheline and NaCl which models as a concave-down curve in XNaCl – P space. In general, sodalite buffers the concentration of neutral aqueous NaCl° in the brine to relatively low values at P < 4 kbar, but NaCl° increases rapidly at higher pressures. Thermochemical modeling of these data was done to determine the activity of the aqueous NaCl° relative to a 1 molal (m) standard state, demonstrating very low activities (<0.2 m, or 1.2 wt.%) of NaCl° at 3 kbar and lower, but rising to relatively high activities (>20 m, or 54 wt.%) of NaCl° at 6 kbar or higher. The results from this study place constraints on the concentration of NaCl° in brines coexisting with nepheline and sodalite and, because of the relative insensitivity of this reaction to temperature, can provide a convenient geobarometer for those localities where the fluid compositions that formed nepheline and sodalite can be determined independently.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 459-470
Author(s):  
Mouhssin El Halim ◽  
Lahcen Daoudi ◽  
Meriam El Ouahabi ◽  
Valérie Rousseau ◽  
Catherine Cools ◽  
...  

ABSTRACTTextural, mineralogical and chemical characterization of archaeological ceramics (zellige) from El Badi Palace (Marrakech, Morocco), the main Islamic monument from the Saadian period (sixteenth century), has been performed to enhance restoration and to determine the technology of manufacturing. A multi-analytical approach based on optical and scanning electron microscopy, cathodoluminescence, X-ray fluorescence and X-ray diffraction was used. Re-firing tests on ceramic supports were also performed to determine the firing temperatures used by the Saadian artisans. A calcareous clay raw material was used to manufacture these decorative ceramics. The sherds were fired at a maximum temperature of 800°C in oxidizing atmosphere. The low firing temperature for ‘zellige’ facilitates cutting of the pieces, but also causes fragility in these materials due to the absence of vitreous phases.


2014 ◽  
Vol 631 ◽  
pp. 137-142 ◽  
Author(s):  
F.N. Oktar ◽  
H. Gokce ◽  
O. Gunduz ◽  
Y.M. Sahin ◽  
D. Agaogullari ◽  
...  

In this study the structural and chemical properties of barnacle shell based bioceramic materials (i.e. hydroxyapatite, whitlockite, monetite and other phases) were produced by using mechano-chemical (hot-plate) conversion method. Cleaned barnacle shells were ball milled down to <75µm in diameter. Differential thermal and gravimetric analyses (DTA/TGA) were performed to determine the exact CaCO3 content. Sample batches of 2g were prepared from the fine powders produced. For each batch, the required volume of an aqueous H3PO4 solution was calculated in order to set the stoichiometric molar ratio of Ca/P equal to 1.5 for ß-tricalcium phosphate (ß-TCP) or to 1.667 for hydroxyapatite (HA). The temperature was set to 80°C for 15 minutes to complete the process. After the titration of the equivalent amount of H3PO4 into the prepared solution, agitation was carried out on a hot-plate (i.e. mechano-chemical processing) for 8 hours. The sediments formed were dried and the resulting TCP and HA powders were calcined at 400°C and 800°C respectively. For complete characterization of the bioceramics produced, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses were carried out. The current study proposes a simple, economic and time efficient method for nano-bioceramic production.


Cerâmica ◽  
2006 ◽  
Vol 52 (324) ◽  
pp. 240-244 ◽  
Author(s):  
M. N. Freire ◽  
J. N. F. Holanda

In Brazil, the food industry generates every year huge amounts of avian eggshell waste, and a critical question is to find an adequate use for this waste. The aim of this work is to determine the chemical, mineralogical and physical characteristics of a nonprocessed avian eggshell waste sample, as well as to investigate its use in wall tile paste. The sample was analyzed regarding to chemical composition, X-ray diffraction, morphology, particle size analysis, density, organic matter, soluble salts, and thermal analysis. The results indicated that the eggshell waste sample rich in CaCO3 can be used as an alternative raw material in the production of wall tile materials.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rihui Lin ◽  
He Li ◽  
Han Long ◽  
Jiating Su ◽  
Wenqin Huang

Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch.


2021 ◽  
Vol 3 (1) ◽  
pp. 8-11
Author(s):  
Yelmida Azis ◽  
Cory Dian Alfarisi ◽  
Komalasari Komalasari ◽  
Khairat Khairat ◽  
Yusnimar Sahan

Hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is the most stable form of calcium phosphate and widely used in various medical applications, mainly in orthopedics and dentistry due to its close similarities with the inorganic mineral component of bone and teeth. This study aims to synthesize hydroxyapatite from duck eggshell using the precipitation method. The duck eggshell was calcined, hydrated (slaking) and underwent carbonation to form Precipitated Calcium Carbonate (PCC).  Afterwards, (NH4)2HPO4 was added to produce HAp by varying the molar ratio of Ca/P by 1.67, 1.77 and 1.87 and stirring speed by 200, 250, 300rpm under basic condition (pH 10 – 11). The best results were obtained at a molar ratio of 1.77 with 200rpm stirring speed. Furthermore, the X-ray Diffraction (XRD) analysis showed that its crystals were hexagonal with sizes of 23.062nm, in the absence of other crystalline phases. Therefore, the hydroxyapatite was obtained in the agglomerates form with a specific surface area of ??55.929m2/g.


Sign in / Sign up

Export Citation Format

Share Document