Master Frame Extraction of Fetal Cardiac Images Using B Mode Ultrasound Images

Sushma Tumkur Venugopal ◽  
Sriraam Natarajan ◽  
Megha P. Arakeri ◽  
Suresh Seshadri

Fetal Echocardiography is used for monitoring the fetal heart and for detection of Congenital Heart Disease (CHD). It is well known that fetal cardiac four chamber view has been widely used for preliminary examination for the detection of CHD. The end diastole frame is generally used for the analysis of the fetal cardiac chambers which is manually picked by the clinician during examination/screening. This method is subjected to intra and inter observer errors and also time consuming. The proposed study aims to automate this process by determining the frame, referred to as the Master frame from the cine loop sequences that can be used for the analysis of the fetal heart chambers instead of the clinically chosen diastole frame. The proposed framework determines the correlation between the reference (first) frame with the successive frames to identify one cardiac cycle. Then the Master frame is formed by superimposing all the frames belonging to one cardiac cycle. The master frame is then compared with the clinically chosen diastole frame in terms of fidelity metrics such as Dice coefficient, Hausdorff distance, mean square error and structural similarity index. The average value of the fidelity metrics considering the dataset used for this study 0.73 for Dice, 13.94 for Hausdorff distance, 0.99 for Structural Similarity Index and 0.035 for mean square error confirms the suitability of the proposed master frame extraction thereby avoiding manual intervention by the clinician. .

Thyroid ultrasonography is the most common and extremely useful, safe, and cost effective way to image the thyroid gland and its pathology. However, an inherent characteristic of Ultrasound (US) imaging is the presence of multiplicative speckle noise. Speckle noise reduces the ability of an observer to distinguish fine details, make diagnosis more difficult. It limits the effective implementation of image analysis steps such as edge detection, segmentation and classification. The main objective of this study is to compare the performance of various spatial and frequency domain filters so as to identify efficient and optimum filter for de-speckling Thyroid US images. The performance of these filters is evaluated using the image quality assessment parameters Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Square Error (MSE) and Root Mean Square Error (RMSE) for different speckle variance. Experimental work revealed that kuan filter resulted in higher PSNR, SNR, SSIM and least MSE, RMSE values compared to other filters

Ersin Elbasi

We use images in several important areas such as military, health, security, and science. Images can be distorted during the capturing, recording, processing, and storing. Image quality metrics are the techniques to measure the quality and quality accuracy level of the images and videos. Most of the quality measurement algorithms does not affect by small distortions in the image. Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Ultrasonic Imaging (UI) are widely used in the health sector. Because of several reasons it might be artifacts in the medical images. Doctor decisions might be affected by these image artifacts. Image quality measurement is an important and challenging area to work on. There are several metrics that have been done in the literature such as mean square error, peak signal-noise ratio, gradient similarity measure, structural similarity index, and universal image quality. Patient information can be an embedded corner of the medical image as a watermark. Watermark can be considered one of the image distortions types. The most common objective evaluation algorithms are simple pixel based which are very unreliable, resulting in poor correlation with the human visual system. In this work, we proposed a new image quality metric which is a Measure of Singular Value Decomposition (M-SVD). Experimental results show that novel M-SVD algorithm gives very promising results against Peak Signal to Noise Ratio (PSNR), the Mean Square Error (MSE), Structural Similarity Index Measures (SSIM), and 3.4. Universal Image Quality (UIQ) assessments in watermarked and distorted images such as histogram equalization, JPEG compression, Gamma Correction, Gaussian Noise, Image Denoising, and Contrast Change.

S. Latha ◽  
Dhanalakshmi Samiappan

<P>Background: Carotid artery images indicate any presence of plaque content, which may lead to atherosclerosis and stroke. Early identification of the disease is possible by taking B-mode ultrasound images in the carotid artery. Speckle is the inherent noise content in the ultrasound images, which essentially needs to be minimized. </P><P> Objective: The objective of the proposed method is to convert the multiplicative speckle noise into additive, after which the frequency transformations can be applied. </P><P> Method: The method uses simple differentiation and integral calculus and is named variable gradient summation. It differs from the conventional homomorphic filter, by preserving the edge features to a great extent and better denoising. The additive image is subjected to wavelet decomposition and further speckle filtering with three different filters Non Local Means (NLM), Vectorial Total Variation (VTV) and Block Matching and 3D filtering (BM3D) algorithms. By this approach, the components dependent on the image are identified and the unwanted noise content existing in the high frequency portion of the image is removed. </P><P> Results & Conclusion: Experiments conducted on a set of 300 B-mode ultrasound carotid artery images and the simulation results prove that the proposed method of denoising gives enhanced results as compared to the conventional process in terms of the performance evaluation methods like peak signal to noise ratio, mean square error, mean absolute error, root mean square error, structural similarity, quality factor, correlation and image enhancement factor.</P>

2021 ◽  
Vol 2127 (1) ◽  
pp. 012022
Y S Bekhtin ◽  
K M Vorobyev

Abstract The proposed compression method is based on the application of a two-dimensional discrete fast wavelet transform (FWT) to planar scans of 3D ultrasound images in order to simultaneously reduce redundancy and suppress speckle at a fixed quota of bits. The main idea of the method is to fuse three rules for threshold processing the wavelet coefficients of the scans, uniform and non-uniform quantizers, and bit quota distributions over subbands of the scan FWT based on the proposed cost function. The simulation results have shown that at the encoding rate of up to 1 bit/pixel, the quantity of artefacts were decreased up to 5-7 % of the original quantity under a signal-to-speckle ratio more than 16 dB, and the structural similarity index (SSIM) increased to 0.94-0.97 for defects of rectangular, triangular and oval shapes. The paper also presents the results proving the effectiveness of the proposed method in comparison with some variants of the solution according to the scheme “pre-filtering + codec”.

Image restoration improves the features information of degraded or corrupted image. The degradation of image because of addition of noise when acquiring the image. Many algorithms are developed by many researches. In this paper image is corrupted by Gaussian noise to generate degraded image. The image is restored from this degraded image by supervised learning based algorithm. Few images are considered for training the dictionary with each element of size 9x9. The degraded image is considered patch by patch for restoring the patch from the trained set of images by support vector machine. The quality assessment of the image done by comparing the quality matrices like mean square error, root mean square error, peak signal to noise ratio, structural similarity index measure and feature similarity index measure. In this paper the images are considered are cameraman, house, Lena, Barbara and Parrot

2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.

2020 ◽  
Vol 30 (1) ◽  
pp. 240-257
Akula Suneetha ◽  
E. Srinivasa Reddy

Abstract In the data collection phase, the digital images are captured using sensors that often contaminated by noise (undesired random signal). In digital image processing task, enhancing the image quality and reducing the noise is a central process. Image denoising effectively preserves the image edges to a higher extend in the flat regions. Several adaptive filters (median filter, Gaussian filter, fuzzy filter, etc.) have been utilized to improve the smoothness of digital image, but these filters failed to preserve the image edges while removing noise. In this paper, a modified fuzzy set filter has been proposed to eliminate noise for restoring the digital image. Usually in fuzzy set filter, sixteen fuzzy rules are generated to find the noisy pixels in the digital image. In modified fuzzy set filter, a set of twenty-four fuzzy rules are generated with additional four pixel locations for determining the noisy pixels in the digital image. The additional eight fuzzy rules ease the process of finding the image pixels,whether it required averaging or not. In this scenario, the input digital images were collected from the underwater photography fish dataset. The efficiency of the modified fuzzy set filter was evaluated by varying degrees of Gaussian noise (0.01, 0.03, and 0.1 levels of Gaussian noise). For performance evaluation, Structural Similarity (SSIM), Mean Structural Similarity (MSSIM), Mean Square Error (MSE), Normalized Mean Square Error (NMSE), Universal Image Quality Index (UIQI), Peak Signal to Noise Ratio (PSNR), and Visual Information Fidelity (VIF) were used. The experimental results showed that the modified fuzzy set filter improved PSNR value up to 2-3 dB, MSSIM up to 0.12-0.03, and NMSE value up to 0.38-0.1 compared to the traditional filtering techniques.

Sign in / Sign up

Export Citation Format

Share Document