Structure Evolution of La(OH)3 /Fe Composite during Ball Milling

2020 ◽  
Vol 65 ◽  
pp. 123-134
Author(s):  
Samira Lalaoua ◽  
Bouguerra Bouzabata ◽  
Safia Alleg ◽  
Abedelmalik Djekoun ◽  
David Shmool

Fe-10wt% La (OH)3 composite powders have been fabricated by ball milling, under argon atmosphere for milling periods of 0, 5 and 10 h, respectively. Changes in structural, morphological, thermal and magnetic properties of the powders during mechanical alloying and during subsequent annealing have been examined by X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). XRD results: showed the formation of new phases (Fe and LaFeO3 perovskite) created through the ball milling. The results showed that the crystalline size of ball milled powders decreased with increasing the milling time. In fact, after 10 h of ball milling, La (OH)3 changes from nanostructure in amorphous structure. The magnetic measurements display a distinct saturation magnetization and coercivity.

2006 ◽  
Vol 510-511 ◽  
pp. 698-701
Author(s):  
Pyuck Pa Choi ◽  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Dae Hwan Kwon

Mechanically induced crystallization of an amorphous Fe90Zr10 alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under high-energy ball-milling in an AGO-2 mill, melt-spun Fe90Zr10 ribbons undergo crystallization into BCC α- Fe(Zr). Zr atoms are found to be solved in the Fe(Zr) grains up to a maximum supersaturation of about 3.5 at.% Zr, where it can be presumed that the remaining Zr atoms are segregated in the grainboundaries. The decomposition degree of the amorphous phase increases with increasing milling time and intensity. It is proposed that the observed crystallization is deformation-induced and rather not attribute to local temperature rises during ball-collisions.


2009 ◽  
Vol 67 ◽  
pp. 45-51
Author(s):  
Rohit Kumar Gupta ◽  
Vijaya Agarwala ◽  
Sunayan Thakur ◽  
Ramesh Chandra Agarwala ◽  
Bhanu Pant

High energy ball milling (HEBM) had been carried out to produce submicron size titanium aluminide intermetallics (TiAl) using elemental powders of Ti and Al alongwith Ni-P coated graphite. 1% graphite powders was added to stoichiometric composition of Ti48Al and ball milling was conducted for different milling time at varying rpm. The effect of milling time and rpm on particle size has been studied. The prepared samples have been characterized using X-ray diffraction, differential scanning calorimetry (DSC) and scaning elecron microscopy (SEM). Grain size as low as 500 nm could be achieved. Formation of Ti3Al, TiAl and carbon containing intermetallic compounds had been confirmed through X-ray diffraction. Milling time and rpm of mill is found to be important factors which control the final particle size.


1997 ◽  
Vol 12 (5) ◽  
pp. 1172-1175 ◽  
Author(s):  
Taiping Lou ◽  
Guojiang Fan ◽  
Bingzhe Ding ◽  
Zhuangqi Hu

The stoichiometric intermetallic compound NbSi2 has been synthesized by mechanical alloying (MA) elemental Nb and Si powders. The alloying process has been investigated by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the formation of the Nb2Si intermetallic compound occurs abruptly after 65 min of milling without any interruptions during the alloying process. However, short interruptions at a 5 min interval during ball milling result in a gradual reaction for the formation of the NbSi2 compound as well as a new metastable bcc structured solid solution. We conclude that the temperature rise during mechanical alloying plays an important role in initiating the abrupt reaction after an incubation milling time.


2011 ◽  
Vol 306-307 ◽  
pp. 1379-1382
Author(s):  
Lin Yan Xia ◽  
Yan Wang

The amorphization and crystallization of mechanical alloyed Cu50Zr40Ag10 alloy have been investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The results demonstrate that a full amorphous phase of Cu50Zr40Ag10 can be obtained through mechanical alloying. The amorphous phase begins to show the initial mechanical crystallization when the milling time is 108 h and subsequently the main milling product is still amorphous structure with increasing milling time up to 208 h. Therefore, the amorphous alloy exhibits the excellent mechanical stability during mechanical alloying. The nearest-neighbor distance of atoms firstly increases then reduces with the increasing milling time, indicating that there is a closely correlation between the initial crystallization behavior and short range ordering.


2021 ◽  
Author(s):  
Hossein Ahmadian

Abstract The effects of multi-walled carbon nano-tubes (MWCNTs) and the ball milling parameters on the mechanical properties of the Al-Mg alloy powders were investigated. Three different composite powders were synthesized through ball-milling process at different time and milling rates. The microstructural and phase analyses were carried out via scanning electron microscopy and X-ray diffraction spectroscopy, respectively. The results indicated that increasing the ball-milling time and rate would lead to the formation of finer particles, which consequently intensifies the plastic deformation and then, results in lower crystallite size. The morphological investigations indicated that while the MWCNTs agglomerates in lower milling rates, increased milling rate not only improve the distribution of the MWCNTs, but also decreases the length of the nano-tubes and promotes their diffusion into Al-Mg matrix. The formation of Al-Mg intermetallic phases through the ball-milling process of the composite powders was also confirmed via microstructural investigations.


2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


2009 ◽  
Vol 1226 ◽  
Author(s):  
Monica Sorescu ◽  
Lucian Diamandescu ◽  
Adelina Tomescu

AbstractThe xZnO-(1-x)alpha-Fe2O3 and xZrO2-(1-x)alpha-Fe2O3 nanoparticles systems have been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 hours. Structural and magnetic characteristics of the zinc and zirconium-doped hematite systems were investigated by X-ray diffraction (XRD), Mössbauer spectroscopy and conductivity measurements. Using the dual absorber method, the recoilless fraction was derived as function of ball milling time for each value of the molar concentration involved. As ZnO is not soluble in hematite in the bulk form, the present study clearly illustrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthetic route allowed us to reach nanometric particle dimensions, which makes these materials very important for gas sensing applications.


1996 ◽  
Vol 460 ◽  
Author(s):  
M. T. Clavaguera-Mora ◽  
J. Zhu ◽  
M. Meyer ◽  
L. Mendoza-Zelis ◽  
F. H. Sanchez ◽  
...  

ABSTRACTThe evolution of the B2-AlFe phase during mechanical grinding in Ar has been examined as a function of milling time by X-Ray diffraction, transmission Mössbauer spectroscopy and differential scanning calorimetry. Short and long range disorder was observed to increase with the mechanical treatment up to the attainment of a steady state. The evolution of the long range order parameter and of the local atomic configurations at Fe sites were analyzed in terms of possible mechanisms for milling induced disordering. The kinetics of the thermal reordering was studied under continuous heating and isothermal calorimetrie regimes. Modeling of the reordering processes by diffusion controlled growth of pre-existing ordered grains is presented as well as the estimated values of both the enthalpy and the activation energy of the reordering process. The results are consistent with a non uniform distribution of disorder throughout the sample and will be compared with preceding information on related systems.


2013 ◽  
Vol 873 ◽  
pp. 217-220
Author(s):  
Min Xu ◽  
Qun Jiao Wang

The paper has described the formation of nanocrystalline Mn80Bi20powders by mechanical alloying and studied the changes of structure and magnetic properties of the powders during the process of ball milling by using X-ray diffraction and saturation magnetization σsmeasurements. The solid solubility of bismuth in manganese increases with milling time and tends to a stable value after 80h milling. The σsof Mn80Bi20increases abruptly with milling time at the early stage and begins to decrease after 15h. At the time of 15h, the σsreaches a maximum, which is about 7Am2/kg. The result shows an interesting information that the antiferromagnetic Mn and the diamagnetic Bi produce ferromagnetic Mn80Bi20in process of mechanical alloying.


2012 ◽  
Vol 531-532 ◽  
pp. 437-441 ◽  
Author(s):  
Qi He ◽  
Tao Liu ◽  
Jian Liang Xie

Fe-Ni-Cr alloy powders with the different components were prepared by Mechanical Alloying (MA). The phase structure, grain size, micro-strain and lattice distortion were determined with X-ray diffraction. The morphology and particle size of the powders were observed and analyzed using a field emission scanning electron microscopy. The results showed that the Fe-Ni-Cr nanocrystalline powders could be obtained by MA. The ball milling time could be reduced with increasing amount of Cr, resulting the formation of Fe-Ni-Cr powders. With the increasing amount of Cr, the speed of Ni diffusion to Fe lattice approaching saturation became more rapid. The particle size got smaller as the ball milling went further; the extent of micro-strain and distortion of lattice intensified; the solid solubility of Ni and Cr in Fe was increased. Finally the super-saturated solid solution of Fe was obtained.


Sign in / Sign up

Export Citation Format

Share Document