A Comparison Study on Microstructure and Mechanical Properties of Si3N4 Ceramic Prepared from MACS Powders

2007 ◽  
Vol 336-338 ◽  
pp. 1179-1181
Author(s):  
Ke Gang Ren ◽  
Ke Xin Chen ◽  
Hai Bo Jin ◽  
Xiao Shan Ning ◽  
He Ping Zhou

In present work, ultra-fine powders with alpha phase content higher than 95 wt% and specific surface area of 15.33 m2/g were prepared by mechanical activated combustion synthesis (MACS) process. The sinterability of as-fabricated Si3N4 as well as the microstructure and mechanical properties of the sintered bulk were investigated by comparing with a kind of commercial available Si3N4 powders used as diluents in MACS process. Employing hot-pressing method, both powders were sintered equally by using Y2O3 and Al2O3 as sintering aids. Results showed that smaller particle size and higher specific surface area were obtained by MACS process when compared with the commercial one. Bulk Si3N4 appeared approximately the same relative density, hardness, strength and fracture toughness, however, proved to be higher while using MACS powders.

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4169
Author(s):  
Marcel Zambrzycki ◽  
Krystian Sokolowski ◽  
Maciej Gubernat ◽  
Aneta Fraczek-Szczypta

In this work, we present a comparative study of the impact of secondary carbon nanofillers on the electrical and thermal conductivity, thermal stability, and mechanical properties of hybrid conductive polymer composites (CPC) based on high loadings of synthetic graphite and epoxy resin. Two different carbon nanofillers were chosen for the investigation—low-cost multi-layered graphene nanoplatelets (GN) and carbon black (CB), which were aimed at improving the overall performance of composites. The samples were obtained by a simple, inexpensive, and effective compression molding technique, and were investigated by the means of, i.a., scanning electron microscopy, Raman spectroscopy, electrical conductivity measurements, laser flash analysis, and thermogravimetry. The tests performed revealed that, due to the exceptional electronic transport properties of GN, its relatively low specific surface area, good aspect ratio, and nanometric sizes of particles, a notable improvement in the overall characteristics of the composites (best results for 4 wt % of GN; σ = 266.7 S cm−1; λ = 40.6 W mK−1; fl. strength = 40.1 MPa). In turn, the addition of CB resulted in a limited improvement in mechanical properties, and a deterioration in electrical and thermal properties, mainly due to the too high specific surface area of this nanofiller. The results obtained were compared with US Department of Energy recommendations regarding properties of materials for bipolar plates in fuel cells. As shown, the materials developed significantly exceed the recommended values of the majority of the most important parameters, indicating high potential application of the composites obtained.


Author(s):  
N.B. Sarsenbayev ◽  
◽  
B.K. Sarsenbayev ◽  
Zh.T. Aimenov ◽  
A.Zh. Aimenov ◽  
...  

Considering the physical chemistry of grinding it is worth quoting the grinding of mineral building material as “the change of physical-chemical properties of finely ground materials can not only be due to the reducing the particle sizes, at mechanical grinding significant changes of the crystalline structure of their surface layers (thickness 15-20 microns) take place, in many cases the technological properties of fine powders are not so much due to dispersability but are namely due to the structure rupture”, at that the energy costs for this are “significantly greater than for the exposal of surfaces with a clean cleavage”. The speed of heterogeneous chemical processes involving fine powders is determined primarily not by the magnitude of their specific surface area, as commonly is believed, but by the decrease of energy of activation as the result of crystalline structure rupture and amorphization. However, both specific surface area and energy demands to achieve are actual evaluation of the effectiveness of any material grinding at a particular unit. The main factor of the production process of cements of low water demand is the grinding, characterized by grindability.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1811 ◽  
Author(s):  
Mitja Linec ◽  
Branka Mušič

Global design and manufacturing of the materials with superb properties remain one of the greatest challenges on the market. The future progress is orientated towards researches into the material development for the production of composites of better mechanical properties to the existing materials. In the field of advanced composites, epoxy molding compounds (EMCs) have attained dominance among the common materials due to their excellent properties that can be altered by adding different fillers. One of the main fillers is often based on silicon dioxide (SiO2). The concept of this study was to evaluate the effects of the selected silica-based fillers on the thermal, rheological, and mechanical properties of EMCs. Various types of fillers with SiO2, including crystalline silica and fused silica, were experimentally studied to clarify the impact of filler on final product. Fillers with different shape (scanning electron microscope, SEM), along with different specific surface area (specific surface area analyzer, BET method) and different chemical structure, were tested to explore their modifications on the EMCs. The influence of the fillers on the compound materials was determined with the spiral flow length (spiral flow test, EMMI), glass transition temperature (differential scanning calorimetry, DSC), and the viscosity (Torque Rheometer) of the composites.


2017 ◽  
Vol 748 ◽  
pp. 79-83 ◽  
Author(s):  
Rudeerat Suntako

Zinc oxide (ZnO) nanograins are synthesized by precipitation method filled epoxidized natural rubber compared to conventional ZnO. The synthesized ZnO nanograins are characterized by X-ray diffraction and transmission electron microscopy and found that average primary size of ZnO synthesized around 40 nm and the specific surface area of 28.72 m2 g-1. Furthermore, the cure characteristics, rubber mechanical properties and permanent set were investigated. The obtained results are found that the ZnO nanograins significantly affected to cure characteristics, rubber mechanical properties and permanent set. This is due to small grain size and large specific surface area.


RSC Advances ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 7833-7841 ◽  
Author(s):  
Lukai Wang ◽  
Junzong Feng ◽  
Yonggang Jiang ◽  
Liangjun Li ◽  
Jian Feng

The traditional SiO2 aerogels are difficult to apply in the fields of energy storage and heat insulation due to their poor mechanical properties.


Author(s):  
Yoshitaka Uchiyama ◽  
Tomoaki Iwai ◽  
Naoya Amino ◽  
Kiichiro Shimosaka

In this study the effects of silica size (or specific surface area), mechanical properties and crosslink density on the wear of silica-filled SBRs (styrene butadiene rubbers) were examined. The modulus of each silica-filled SBR examined was proportional to crosslink density. The wear rate of silica-filled SBRs was reduced as the modulus and crosslink density increased. The wear rates increased as the specific surface area of the silica fill particles decreased, when the content of silane coupling agent was constant. As a result, the wear rate was shown to be lower as the modulus and crosslink density increased.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2074
Author(s):  
Huibin Cheng ◽  
Xiaoli Sun ◽  
Baoquan Huang ◽  
Liren Xiao ◽  
Qinghua Chen ◽  
...  

Tuning the high properties of segregated conductive polymer materials (CPCs) by incorporating nanoscale carbon fillers has drawn increasing attention in the industry and academy fields, although weak interfacial interaction of matrix-filler is a daunting challenge for high-loading CPCs. Herein, we present a facile and efficient strategy for preparing the segregated conducting ultra-high molecular weight polyethylene (UHMWPE)-based composites with acceptable mechanical properties. The interfacial interactions, mechanical properties, electrical properties and electromagnetic interference (EMI) shielding effectiveness (SE) of the UHMWPE/conducting carbon black (CCB) composites were investigated. The morphological and Raman mapping results showed that UHMWPE/high specific surface area CCB (h-CCB) composites demonstrate an obviously interfacial transition layer and strongly interfacial adhesion, as compared to UHMWPE/low specific surface area CCB (l-CCB) composites. Consequently, the high-loading UHMWPE/h-CCB composite (beyond 10 wt% CCB dosage) exhibits higher strength and elongation at break than the UHMWPE/l-CCB composite. Moreover, due to the formation of a densely stacked h-CCB network under the enhanced filler-matrix interfacial interactions, UHMWPE/h-CCB composite possesses a higher EMI SE than those of UHMWPE/l-CCB composites. The electrical conductivity and EMI SE value of the UHMWPE/h-CCB composite increase sharply with the increasing content of h-CCB. The EMI SE of UHMWPE/h-CCB composite with 10 wt% h-CCB is 22.3 dB at X-band, as four times that of the UHMWPE/l-CCB composite with same l-CCB dosage (5.6 dB). This work will help to manufacture a low-cost and high-performance EMI shielding material for modern electronic systems.


2021 ◽  
Vol 1036 ◽  
pp. 386-394
Author(s):  
Fu Xing Cheng ◽  
Yong Liu ◽  
Ji Xiao ◽  
Xiao Xu Deng ◽  
Hai Long Wang

To explore the effect of mechanical activation on the particle size distribution of the composite admixture a self-designed test jet mill is used. We have studied the effects of different specific surface areas of composite admixtures on the workability, mechanical properties and durability of concrete and combined X-ray diffraction (XRD) with scanning electron microscopy (SEM) to analyze the mechanism of concrete performance improvement. Results showed that, mechanical activation can significantly increase the content of particles below 3 um; appropriate increase in the specific surface area of composite admixture is conducive to improving the performance of concrete; As the specific surface area increases, the hydration activity of the composite admixture increases first and then tends to be stable; during the hydration process, more thin-plate Ca(OH)2 is converted into needle-shaped AFt, which improves the cement-based material and thereby improving the macro mechanical properties and durability.


Sign in / Sign up

Export Citation Format

Share Document