Comparison of some Final Part Geometrical Characteristics of Cylindrical Cups Manufactured by Deep-Drawing and Two-Point Incremental Sheet Forming

2009 ◽  
Vol 410-411 ◽  
pp. 355-363 ◽  
Author(s):  
Babak Taleb Araghi ◽  
Markus Bambach ◽  
Gerhard Hirt

Asymmetric incremental sheet forming (AISF) is a new sheet metal forming process in which sheet metal parts are produced by CNC-controlled movements of a simple ball-headed forming tool. Despite its flexibility and successful application in many cases, AISF has not yet been established in an industrial context due to some still existing process limits such as severe thinning, which strongly depends on the inclination of the part surface, as well as a limited geometric accuracy due to springback. Furthermore, there is little knowledge available about the properties of parts produced by AISF, especially in comparison to deep-drawn parts. The aim of the present paper is to compare cylindrical cups manufactured by deep-drawing and AISF regarding the resulting strain and thickness distribution. For AISF, different forming strategies were applied. Comparisons of the wall thickness and surface strain distributions show similar results for the cup produced by deep-drawing and the best cup produced by AISF, but the surface strains and the sheet thinning in the parts formed by AISF were larger than in the deep-drawn part.

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 661
Author(s):  
Roman Ulrich Christopher Schmitz ◽  
Thomas Bremen ◽  
David Benjamin Bailly ◽  
Gerhard Kurt Peter Hirt

Incremental sheet forming (ISF) is a flexible sheet metal forming process to realize products within short time from design to the first produced part. Although fundamental research on ISF has been carried out around the world, ISF still misses commonly required tolerances for industrial application. In this study, the influences of tool path as well as intrusion depth of the forming tool into the sheet material on the geometrical accuracy were investigated. In the conducted experiments, both flat and stretch-formed sheet metal blanks with different tool paths and intrusion depths were examined. Experimental and numerical investigations showed that changes in the range of a tenth millimeter of the intrusion depth with a consistent tool path lead to different resulting part geometries. A better understanding of the sensitive influence of the tool path and the intrusion depth on the resulting geometry might lead to more accurate parts in the future.


2018 ◽  
Vol 178 ◽  
pp. 02004 ◽  
Author(s):  
Daniel Nasulea ◽  
Gheorghe Oancea

In incremental sheet forming processes, the expensive dedicated tool are avoided and replaced with a cheap and simple fixing device which support the sheet metal blanks. The current paper presents how a fixing device used for single point incremental forming device is designed, FEM simulated and manufactured. The fixing device can be used for parts with a cone frustum and pyramidal frustum made of DC05 deep drawing steel. The forces developed in the process and the device displacements were estimated using FEM simulation. The device components were manufactured using a CNC machines and the physical assembly is also presented in the paper.


2015 ◽  
Vol 809-810 ◽  
pp. 259-264
Author(s):  
Dan Chiorescu ◽  
Gheorghe Nagîț ◽  
Oana Dodun

Deep drawing is one of the most important processes for forming sheet metal parts. Besides its importance as a forming process, cup drawing also serves as a basic test for the sheet metal formability. This article investigates the influence of the die punch clearance, the average velocity in the active stage and the lubrication on the deep drawing quality expressed by the thickness evenness on the finished product surface. In order to minimize the number of experimental trials, a fractional factorial design was developed together with an orthogonal array, thus analyzing the contribution of the three parameters under study to the quality of the deep drawing process. Using TAGUCHI’s signal-to-noise ratio, we determine that ram velocity has a major influence, followed by the clearance between the active elements, while the contribution of lubrication is negligible. The results of the research are useful in developing a sensible design of experiments.


2005 ◽  
Vol 6-8 ◽  
pp. 457-464 ◽  
Author(s):  
L. Lamminen

Incremental sheet forming (ISF) has been a subject of research for many research groups before. However, all of the published results so far have been related to either commercial ISF machines or ISF forming with NC mills or similar. The research reported in this paper concentrates on incremental sheet forming with an industrial robot. The test equipment is based on a strong arm robot and a moving forming table, where a sheet metal blank is attached. The tool slides on the surface of the sheet and forms it incrementally to the desired shape. The robot is capable of 5-axis forming, which enables forming of inwards curved forms. In this paper the forming limit diagram (FLD) for ISF with the robot is presented and it is compared with conventional forming limit diagrams. It will be shown that the conventional FLD does not apply to incremental forming process. Geometrical accuracy of sample pieces is also studied. Cones of different shapes are formed with the robot equipment and their correspondence with the 3D CAD model is evaluated. The results are compared with other results of accuracy of incremental sheet forming, reported earlier by other researchers. The third issue covered in this article is a product development point of view to incremental sheet forming. In addition to fast prototyping and low volume production of sheet metal parts, ISF brings new possibilities to sheet metal component design and manufacturing. These possibilities can only be exploited if design rules, that will take the possibilities and limitations of the method into account are created for ISF.


2011 ◽  
Vol 5 (3) ◽  
pp. 263-271 ◽  
Author(s):  
A. Göttmann ◽  
J. Diettrich ◽  
G. Bergweiler ◽  
M. Bambach ◽  
G. Hirt ◽  
...  

Author(s):  
Huan Zhang ◽  
Bin Lu ◽  
Jun Chen ◽  
Sule Feng ◽  
Zongquan Li ◽  
...  

Incremental sheet forming is a cost-effective process for rapid manufacturing of sheet metal products. However, incremental sheet forming also has some limitations such as severe sheet thinning and long processing time. These limitations hamper the forming part quality and production efficiency, thus restricting the incremental sheet forming application in industrial practice. To overcome the problem of sheet thinning, a variety of processes, such as multi-step incremental sheet forming, have been proposed to improve the material flow and thickness distribution. In this work, a new process has been developed by introducing multi-point forming as preforming step before conducting incremental sheet forming processing. Employing an established hybrid sheet forming system and the corresponding thickness prediction model, the preform shape can be optimized by employing a two-step optimization approach to improve the sheet thickness distribution. In total, two case study examples, including a hemisphere part and an aerospace cowling part, are fabricated using the developed hybrid flexible process in this study. The experimental results show that the hybrid flexible forming process with the optimal preform design could achieve sheet parts with more uniform thickness distribution and reduced forming time.


2013 ◽  
Vol 634-638 ◽  
pp. 2894-2898 ◽  
Author(s):  
M Moayedfar ◽  
Zulkiflle Leman ◽  
H Mirabi ◽  
B.T.H.T. Baharuddin

The effect of forming parameters during the incremental sheet forming process (ISF) was studied for a circular shape sheet part. ISF is known as a rapid prototyping method to pro-duce sheet metal parts in a batch production series. ISF has found to be useful and advantageous which increases its application in industry. A CNC lathe machine was used in this study because it was easily programmed to move an indenter which worked as the tool, through the sheet metal which was clamped on a plain rounded mold. The work also investigated the influence of some process variables such as spindle speed, tool material; tool feed rate and temperature during the forming procedure. The results showed that a proper spindle speed and tool feed rate at some stage in the forming process improved the surface quality and the rate of penetration.


2009 ◽  
Vol 623 ◽  
pp. 37-48 ◽  
Author(s):  
Steeve Dejardin ◽  
Jean Claude Gelin ◽  
Sebastien Thibaud

The paper is related to the analysis of shape distortions and springback effects arising in Single Point Incremental Forming. An experimental set up has been designed and manufactured to carry single point incremental forming on small size sheet metal parts. The experimental set up is mounted on 3-axes CNC milling machine tool and the forming tool is attached and move with the spindle. Experiments have been carried out on sheet metal parts to obtain tronconical shapes. The forming strategy associated to the movement of the forming tool has been also investigated. The experiments indicate that shape distortions arising in the corners of the tronconical shape are clearly related to forming strategy. The springback of rings cut in the tronconical parts have been also investigated. It is shown that positive or negative springback could be also related to forming strategy. In order to enhance experimental investigations, Finite Element simulations of the incremental sheet forming have been performed. Results obtained from the simulations prove that if boundary conditions and forming strategy carefully are taking into account, the finite elements results are in good agreement with experiments. So it is then possible to use FEM as a design tool for incremental sheet forming.


Author(s):  
Pedro de Jesus Garcia Zugasti ◽  
Erick M. Salcedo Murillo ◽  
Hugo I. Medellín Castillo ◽  
Dirk Frederik De Lange ◽  
Juan Gabriel Sandoval Granja

Deep drawing is a cost effective sheet metal forming process to produce many industrial components. However, complex geometrical drawn parts are difficult to form due to several modes and conditions of the material flow. Commonly problems associated to the forming operation are wrinkling and tearing defects, which affect the cost and quality of the parts. Actually, there are not theoretical methods developed in the literature yet, so the trial and error method are used to reduce or eliminate the deep drawing defects or inclusive is utilized in the earlier production stages, resulting in higher costs and longer production times. This paper describe a proposed solution to reduce or eliminate the wrinkles defects on the flanges of an industrial fan support that result from applying the forming process. An analysis procedure based on the development of the correct sheet metal blank considering three different blank geometries was proposed. The analysis include the analytical methods available in the literature, the simulation with a computer program based on the Finite Element Method (FEM) and experimentation. FEM model, simulation and results, these were validated by measuring the thickness profile on the flanges of a deep drawing part, before and after the procedure implementation. The results have shown that combining both the analytical and FEM methods, were possible to know the influence degree of the sheet metal blank geometry to reduce or eliminate the wrinkle defect and these can be used as an effective design tool.


Sign in / Sign up

Export Citation Format

Share Document