Research on Automatic Detection Technology for Coal Seam Floor Failure Features

2011 ◽  
Vol 467-469 ◽  
pp. 1870-1875 ◽  
Author(s):  
Guang Ming Zhao ◽  
Xiang Rui Meng

By the impact of coal mining, coal floor will produce distortion and damage, and make the damage zone which may result in water inrush from the floor of coal seam. CT technology with DC electricity is used to analyze two-dimensional point source current field by employing the forward calculation, inverse iteration, model correction and other methods. On the basis, inverted resistivity image of the detecting zone is obtained, which can help to determine damage law and damage depth of coal seam floor. And then the possibility of water inrush from the coal floor is analyzed. Industry practice shows that the research results are credible and can play an important guiding role in the controlling of water inrush.

2013 ◽  
Vol 807-809 ◽  
pp. 2378-2388 ◽  
Author(s):  
Hua Wang ◽  
Zhi Qiang Liu ◽  
Hong Guang Ji ◽  
Jin An Wang ◽  
Guo Dong Zhao ◽  
...  

Shuangliu mine is located in the middle of Hedong coalfield, Lvliang City , Shanxi Province. It is one of the typical NorthChinaType coalfields. The upper strata of the lower-group coal seams (8#, 9# seam) have several thin-layer limestones of the Taiyuan Formation, and the underlying strata of the lower-group coal seams have thick Ordovician limestone. Water inrush accident has ever happened in other mine in its vicinity. Therefore, whether the lower-group coal seams could be mined safely is related to the medium-and long-term program and sustainable development of Shuangliu Mine. Based on experimental study of physical and mechanical properties of main rocks of the roof and floor of the under-group coal seams, and the application of "Up Three Zone" Theory of coal seam roof (the caving zone, water flowing fractured zone and bending sinking zone), "Down Three Zone" Theory of coal seam floor (mining damage zone, water-resisting zone, water-conductive zone) and Water inrush coefficient Theory, we analyzed the water inrush risk and divided potential dangerous subareas of water inrush from coal seam floor while mining lower-group coal seams. The research findings can provide scientific basis for mining design and safe mining of lower-group coal seams in Shuangliu Coal Mine.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qingliang Chang ◽  
Xingjie Yao ◽  
Chongliang Yuan ◽  
Qiang Leng ◽  
Hao Wu

Water inrush disasters are extremely prone to occur if the coal seam floor contains a confined aquifer. To find out the failure behavior of coal seam floor of paste filling working face, a beam-based theoretical model for the floor aquifuge was built, and then, the water inrush risk was evaluated based on the thickness of floor aquifuge. Next, the floor failure characteristics of the paste filling face was numerically studied and the effects of the filling interval and long-term strength of the filling body on the floor failure depth, stress and displacement distributions, and plastic zone were explored. The results showed that the theoretical model for evaluating the safety of the floor of the paste filling face based on the empty roof distance is proved to be consistent with that of the empirical formula judged based on the assumption that the paste filling working face was regarded as a cut hole with a certain width. The filling interval has a significant effect on the stress concentration of the surrounding rock, failure depth of floor, and roof-floor convergence. The smaller the filling interval is, the smaller their values are. When the filling rate is 98%, the long-term strength of the filling body is 5 MPa, and the floor failure depth is not more than 4 m. In contrast, the strength of the filling body has no obvious influence on the floor failure depth, but it has a certain impact on the roof-floor convergence. From the perspective of reducing floor failure depth, there is no need to increase the long-term strength of backfill, but it is necessary to increase the early strength of backfill so as to reduce the width of the equivalent roadway.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanhui Du ◽  
Weitao Liu ◽  
Xiangxi Meng ◽  
Lifu Pang ◽  
Mengke Han

Hidden faults in deep coal seam floor threaten the exploitation of coal resources. Under the influence of mining and water confined in the floor, the cemented filler in the hidden fault will be eroded by water flow, in order to investigate the fracture characteristics and water inrush risk of hidden faults in floors above confined aquifer. Using the 27305 working face as geological background, the influence of the seepage scouring filler on the mechanism of water inrush from hidden faults was assessed by developing a stress-seepage coupling model and employing the finite difference method to simulate the seepage process of hidden faults under the combined action of high ground stress and high confined water. The evolution of seepage, shear stress, and plastic zone was also assessed. The influence of the hydraulic pressure of the aquifer and the thickness of a waterproof rock floor on the formation of the water inrush pathway was analyzed. Results indicate that (1) under the influence of mining, the hidden fault experienced the change process of stress stability, stress concentration, and stress release. The shear stress increases first and then decreases. The compressive stress decreases gradually due to stress release. (2) Water inrush disaster will not occur immediately when the working face is above the hidden fault. The delayed water inrush occurs in the mined-out area when the working face advances to 160 m, the floor failure zone is connected with the hidden fault failure zone, and the delayed water inrush channel is formed. (3) With the mining advances, the water pressure of aquifer is the same. The larger-angle fault leads to the thinner thickness of floor aquifer. The greater the influence of hidden fault on coal seam mining, the higher the danger of water inrush.


2014 ◽  
Vol 919-921 ◽  
pp. 758-761 ◽  
Author(s):  
Chun Jie Song ◽  
Cheng Fan ◽  
Li Song

According to the seam floor aquifer inhomogeneity,in order to analysis the coal deformation and failure law in pressurized water ,this paper established mechanical model of nonuniform pressure and fluidstructure interaction models,using numerical simulation software FLAC3D analysis fluidstructure interaction water inrush regularity .Analyzing the extent of damage from the coal seam floor, the stress and displacement when working face promote different distances, this paper carried out the basic rules of mining face water inrush. This study shows that by monitoring the position of bottom water inrush occurs easily, analyzing the influence of pore pressure by the mining ,it can be accurately analysis the risk of water inrush and play an important role in guiding prevention and control of water inrush.


2021 ◽  
Author(s):  
Haitao Xu ◽  
hui yang ◽  
Wenbin Sun ◽  
Lingjun Kong ◽  
Peng Zhang

Abstract In order to find out the characteristics of geological isomer exposed in the mining process of 12318 working face in Pansan Mine and grasp its influence law on subsequent coal seams mining, the isomer was firstly determined as the collapse column by means of 3D seismic, transient electromagnetic detection, SYT detection and other methods, and its development characteristics, conductivity and water enrichment were identified.Then FLAC3D numerical simulation software was used to analyze the characteristics of vertical stress and plastic failure zone in different coal seams during mining.Finally, by comparing the ultimate failure depth of floor and the thickness of waterproof layer in the process of each coal seam directly pushing through the collapse column, the risk of water inrush and the prevention are analyzed.The results show that the exposed geological isomer is characterized by weak water-rich collapse column.Under the influence of the mining of the previous coal seam and the activation of the collapse column, the subsequent coal seam is in the low stress area before mining, which increases the floor failure and causes the activation of the collapse column more easily during mining.Coal 5# and 4# can be directly pushed through the collapse column, and coal pillar of sufficient width should be left for coal 1# to prevent the collapse column from activating water inrush.


2014 ◽  
Vol 614 ◽  
pp. 321-326 ◽  
Author(s):  
Xiao Ming Li ◽  
Qi Mou Zhou ◽  
Xiao Rui Xiang ◽  
Jun Liu

There are many factors that promote the coal seam floor water bursting, one coal seam floor water inrush evaluation method that can truly reflect being controlled by the impact of multiple factors and having very complex mechanism and process of evolution in the current is very necessary. In this paper, the case of the 9# coal seam in Shanxi Liulin Hongshengjude coal industry Co. Ltd.is taken as an example, analyzing the application of vulnerability index method in coal seam floor water inrush evaluation, a comparison is made on the assessment results obtained from vulnerability index method and the traditional water inrush coefficient assessment method. The results indicate that the assessment result of the vulnerability index method which considers factors comprehensively is truer to the reality and more advantages.


2019 ◽  
Vol 79 ◽  
pp. 02012
Author(s):  
Gan Tian ◽  
Weiyue Hu

In order to study on mechanism of in-situ stress control on the coal floor damage during deep coal seam mining, the internal relationship among ground stress, mine pressure and floor water inrush was analyzed base on the increasing distribution rule of ground stress with the increasing depth of stratum. It is shown that the stress on the deep coal seam has obvious control effect on the depth of the floor damage and failure through the experimental study and the statistical analysis of the measured data of the mining damage depth of the coal seam floor. And the calculation formula for the depth of the floor failure in the deep seam mining was put forward.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 555
Author(s):  
Thomas C. Goff ◽  
Mark D. Nelson ◽  
Greg C. Liknes ◽  
Tivon E. Feeley ◽  
Scott A. Pugh ◽  
...  

A need to quantify the impact of a particular wind disturbance on forest resources may require rapid yet reliable estimates of damage. We present an approach for combining pre-disturbance forest inventory data with post-disturbance aerial survey data to produce design-based estimates of affected forest area and number and volume of trees damaged or killed. The approach borrows strength from an indirect estimator to adjust estimates from a direct estimator when post-disturbance remeasurement data are unavailable. We demonstrate this approach with an example application from a recent windstorm, known as the 2020 Midwest Derecho, which struck Iowa, USA, and adjacent states on 10–11 August 2020, delivering catastrophic damage to structures, crops, and trees. We estimate that 2.67 million trees and 1.67 million m3 of sound bole volume were damaged or killed on 23 thousand ha of Iowa forest land affected by the 2020 derecho. Damage rates for volume were slightly higher than for number of trees, and damage on live trees due to stem breakage was more prevalent than branch breakage, both likely due to higher damage probability in the dominant canopy of larger trees. The absence of post-storm observations in the damage zone limited direct estimation of storm impacts. Further analysis of forest inventory data will improve understanding of tree damage susceptibility under varying levels of storm severity. We recommend approaches for improving estimates, including increasing spatial or temporal extents of reference data used for indirect estimation, and incorporating ancillary satellite image-based products.


Sign in / Sign up

Export Citation Format

Share Document