Simulation of Hot Extrusion of an Aluminum Alloy with Modeling of Microstructure

2011 ◽  
Vol 491 ◽  
pp. 257-264 ◽  
Author(s):  
A. Ockewitz ◽  
D.Z. Sun ◽  
F. Andrieux ◽  
Sören Müller

In this work a numerical method for the simulation of extrusion processes with modeling of microstructure is presented. Extensive testing was done to provide a basis for the verification of simulation results. Circular rods of AA6005A were extruded by backward and forward extrusion with different extrusion ratios, billet temperatures and product velocities. The extruded rods were cooled either by water or at air to distinguish between dynamic and static recrystallization. Temperature and strain-rate dependent yield stresses were determined from hot compression tests. Special friction tests on cylindrical specimens under high hydrostatic stresses at high temperatures have been performed and the parameters of a friction model were identified from the experiments. The recrystallized volume fraction and grain sizes in the extruded rods were analyzed by means of optical micrographs. The obtained results were used to determine the parameters of a recrystallization model which was implemented in the FE code HyperXtrude. The transferability of the numerical model was checked by simulating forward extrusion tests using the model parameters obtained from backward extrusion tests.

Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 212-232
Author(s):  
Ludwig Herzog ◽  
Klaus Augsburg

The important change in the transition from partial to high automation is that a vehicle can drive autonomously, without active human involvement. This fact increases the current requirements regarding ride comfort and dictates new challenges for automotive shock absorbers. There exist two common types of automotive shock absorber with two friction types: The intended viscous friction dissipates the chassis vibrations, while the unwanted solid body friction is generated by the rubbing of the damper’s seals and guides during actuation. The latter so-called static friction impairs ride comfort and demands appropriate friction modeling for the control of adaptive or active suspension systems. In this article, a simulation approach is introduced to model damper friction based on the most friction-relevant parameters. Since damper friction is highly dependent on geometry, which can vary widely, three-dimensional (3D) structural FEM is used to determine the deformations of the damper parts resulting from mounting and varying operation conditions. In the respective contact zones, a dynamic friction model is applied and parameterized based on the single friction point measurements. Subsequent to the parameterization of the overall friction model with geometry data, operation conditions, material properties and friction model parameters, single friction point simulations are performed, analyzed and validated against single friction point measurements. It is shown that this simulation method allows for friction prediction with high accuracy. Consequently, its application enables a wide range of parameters relevant to damper friction to be investigated with significantly increased development efficiency.


SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 689-700 ◽  
Author(s):  
S.. Ameen ◽  
A. Dahi Taleghani

Summary Injectivity loss is a common problem in unconsolidated-sand formations. Injection of water into a poorly cemented granular medium may lead to internal erosion, and consequently formation of preferential flow paths within the medium because of channelization. Channelization in the porous medium might occur when fluid-induced stresses become locally larger than a critical threshold and small grains are dislodged and carried away; hence, porosity and permeability of the medium will evolve along the induced flow paths. Vice versa, flowback during shut-in might carry particles back to the well and cause sand accumulation inside the well, and subsequently loss of injectivity. In most cases, to maintain the injection rate, operators will increase injection pressure and pumping power. The increased injection pressure results in stress changes and possibly further changes in channel patterns around the wellbore. Experimental laboratory studies have confirmed the presence of the transition from uniform Darcy flow to a fingered-pattern flow. To predict these phenomena, a model is needed to fill this gap by predicting the formation of preferential flow paths and their evolution. A model based on the multiphase-volume-fraction concept is used to decompose porosity into mobile and immobile porosities where phases may change spatially, evolve over time, and lead to development of erosional channels depending on injection rates, viscosity, and rock properties. This model will account for both particle release and suspension deposition. By use of this model, a methodology is proposed to derive model parameters from routine injection tests by inverse analysis. The proposed model presents the characteristic behavior of unconsolidated formation during fluid injection and the possible effect of injection parameters on downhole-permeability evolution.


2016 ◽  
Vol 35 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Sendong Gu ◽  
Liwen Zhang ◽  
Chi Zhang ◽  
Wenfei Shen

AbstractThe hot deformation characteristics of nickel-based alloy Nimonic 80A were investigated by isothermal compression tests conducted in the temperature range of 1,000–1,200°C and the strain rate range of 0.01—5 s–1on a Gleeble-1500 thermomechanical simulator. In order to establish the constitutive models for dynamic recrystallization (DRX) behavior and flow stress of Nimonic 80A, the material constantsα,nand DRX activation energyQin the constitutive models were calculated by the regression analysis of the experimental data. The dependences of initial stress, saturation stress, steady-state stress, dynamic recovery (DRV) parameter, peak strain, critical strain and DRX grain size on deformation parameters were obtained. Then, the Avrami equation including the critical strain for DRX and the peak strain as a function of strain was established to describe the DRX volume fraction. Finally, the constitutive model for flow stress of Nimonic 80A was developed in DRV region and DRX region, respectively. The flow stress values predicted by the constitutive model are in good agreement with the experimental ones, which indicates that the constitutive model can give an accurate estimate for the flow stress of Nimonic 80A under the deformation conditions.


2014 ◽  
Vol 59 (1) ◽  
pp. 121-126
Author(s):  
M. Zygmunt-Kiper ◽  
L. Blaz ◽  
M. Sugamata

Abstract Mechanical alloying of high-purity aluminum and 10 wt.% NiO powders combined with powder vacuum compression and following hot extrusion method was used to produce an Al-NiO composite. Mechanical properties of as-extruded materials as well as the samples annealed at 823 K /6 h, were tested by compression at 293 K - 770 K. High mechanical properties of the material were attributed to the highly refined structure of the samples. It was found that the structure morphology was practically not changed during hot-compression tests. Therefore, the effect of deformation temperature on the hardness of as-deformed samples was very limited. The annealing of samples at 823 K/6 h induced a chemical reaction between NiO-particles and surrounding aluminum matrix. As a result, the development of very fine aluminum oxide and Al3Ni grains was observed.


2007 ◽  
Vol 539-543 ◽  
pp. 3448-3453 ◽  
Author(s):  
C. Schmidt ◽  
Rudolf Kawalla ◽  
Tom Walde ◽  
Hermann Riedel ◽  
A. Prakash ◽  
...  

Due to the deformation mechanisms and the typical basal texture rolled magnesium sheets show a significant asymmetry of flow stress in tension and compression. In order to avoid this undesired behavior it is necessary to achieve non-basal texture during rolling, or at least, to reduce the intensity of the basal texture component. The reduction of the anisotropy caused by the basal texture is very important for subsequent forming processes. This project aims at optimizing the hot rolling process with special consideration of texture effects. The development of the model is carried out in close cooperation with the experimental work on magnesium alloy AZ31 .The experimental results are required for the determination of model parameters and for the verification of the model. Deformation-induced texture is described by the visco-plastic self-consistent (VPSC) model of Lebensohn and Tomé. The combination of deformation and recrystallization texture models is applied to hot compression tests on AZ31, and it is found, that the model describes the observed texture and hardening/softening behavior well. In some cases rotation recrystallization occurs in AZ31 which appears to be a possibility to reduce the undesired basal rolling texture.


Author(s):  
Roger C. von Doenhoff ◽  
Robert J. Streifel ◽  
Robert J. Marks

Abstract A model of the friction characteristics of carbon brakes is proposed to aid in the understanding of the causes of brake vibration. The model parameters are determined by a genetic algorithm in an attempt to identify differences in friction properties between brake applications during which vibration occurs and those during which there is no vibration. The model computes the brake torque as a function of wheelspeed, brake pressure, and the carbon surface temperature. The surface temperature is computed using a five node temperature model. The genetic algorithm chooses the model parameters to minimize the error between the model output and the torque measured during a dynamometer test. The basics of genetic algorithms and results of the model parameter identification process are presented.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 889 ◽  
Author(s):  
Sanghita Mridha ◽  
Mageshwari Komarasamy ◽  
Sanjit Bhowmick ◽  
Rajiv Mishra ◽  
Sundeep Mukherjee

High entropy alloys (HEAs) have attracted widespread interest due to their unique properties at many different length-scales. Here, we report the fabrication of nanocrystalline (NC) Al0.1CoCrFeNi high entropy alloy and subsequent small-scale plastic deformation behavior via nano-pillar compression tests. Exceptional strength was realized for the NC HEA compared to pure Ni of similar grain sizes. Grain boundary mediated deformation mechanisms led to high strain rate sensitivity of flow stress in the nanocrystalline HEA.


Holzforschung ◽  
2017 ◽  
Vol 71 (6) ◽  
pp. 505-514 ◽  
Author(s):  
Carolina Moilanen ◽  
Tomas Björkqvist ◽  
Markus Ovaska ◽  
Juha Koivisto ◽  
Amandine Miksic ◽  
...  

Abstract A dynamic elastoplastic compression model of Norway spruce for virtual computer optimization of mechanical pulping processes was developed. The empirical wood behaviour was fitted to a Voigt-Kelvin material model, which is based on quasi static compression and high strain rate compression tests (QSCT and HSRT, respectively) of wood at room temperature and at high temperature (80–100°C). The effect of wood fatigue was also included in the model. Wood compression stress-strain curves have an initial linear elastic region, a plateau region and a densification region. The latter was not reached in the HSRT. Earlywood (EW) and latewood (LW) contributions were considered separately. In the radial direction, the wood structure is layered and can well be modelled by serially loaded layers. The EW model was a two part linear model and the LW was modelled by a linear model, both with a strain rate dependent term. The model corresponds well to the measured values and this is the first compression model for EW and LW that is based on experiments under conditions close to those used in mechanical pulping.


Author(s):  
Huayuan Feng ◽  
Subhash Rakheja ◽  
Wen-Bin Shangguan

The drive shaft system with a tripod joint is known to cause lateral vibration in a vehicle due to the axial force generated by various contact pairs of the tripod joint. The magnitude of the generated axial force, however, is related to various operating factors of the drive shaft system in a complex manner. The generated axial force due to a drive shaft system with a tripod joint and a ball joint was experimentally characterized considering ranges of operational factors, namely, the input toque, the shaft rotational speed, the articulation angle, and the friction. The data were analyzed to establish an understanding of the operational factors on the generated axial force. Owing to the observed significant effects of all the factors, a multibody dynamic model of the drive shaft system was formulated for predicting generated axial force under different operating conditions. The model integrated the roller–track contact model and the velocity-based friction model. Based on a quasi-static finite element model, a new methodology was proposed for identifying the roller–track contact model parameters, namely, the contact stiffness and force index. To further enhance the calculation accuracy of the multibody dynamic model, a new methodology for identifying the friction model parameters and the force index was proposed by using the measured data. The validity of the model was demonstrated by comparing the model-predicted and measured magnitudes of generated axial force for the ranges of operating factors considered. The results showed that the generated axial force of the drive shaft system can be calculated more accurately and effectively by using the identified friction and contact parameters in the paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
C. G. P. Moraes ◽  
F. A. A. Jesus ◽  
Z. S. Macedo

Bismuth germanate (Bi12GeO20) ceramics were produced using modified Pechini route, and the synthesis parameters, crystalline phases, microstructure, and sintering conditions were investigated.Bi12GeO20powders with submicrometric particle sizes were investigated for calcination temperatures from 400 to 600°C, with soaking times of 1 h and 5 h. Controlling the synthesis parameters, dense ceramics with two different grain sizes of 3.4 ± 0.5 µm and 5.7 ± 0.8 µm could be produced after sintering at 750°C/1 h. The electric and dielectric properties of these ceramics were determined by impedance spectroscopy (IS). From the results, it was concluded that the dielectric permittivity measured at high frequencies is insensitive to the grain size, while the AC dark conductivity presents a noticeable dependency on this feature. This behaviour was discussed on the basis of a Maxwell-Wagner interfacial relaxation, whose intensity depends directly on the volume fraction of grain boundaries in the sample.


Sign in / Sign up

Export Citation Format

Share Document