Monitoring Changes in the Soil and Foundation Characteristics of an Offshore Wind Turbine Using Automated Operational Modal Analysis

2013 ◽  
Vol 569-570 ◽  
pp. 652-659 ◽  
Author(s):  
Gert de Sitter ◽  
Wout Weitjens ◽  
Mahmoud El-Kafafy ◽  
Christof Devriendt

This paper will show the first results of a long term monitoring campaign on an offshore wind turbine in the Belgian North Sea. It will focus on the vibration levels and resonant frequencies of the fundamental modes of the support structure. These parameters will be crucial to minimize O&M costs and to extend the lifetime of offshore wind turbine structures. For monopile foundations for example, scouring and reduction in foundation integrity over time are especially problematic because they reduce the fundamental structural resonance of the support structure, aligning that resonance frequency more closely to the lower frequencies. Since both the broadband wave energy and the rotating frequency of the turbine are contained in this low frequency band, the lower natural frequency can create resonant behavior increasing fatigue damage. Continuous monitoring of the effect of scour on the dynamics of the wind turbine will help to optimize the maintenance activities on the scour protection system. To allow a proper continuous monitoring during operation, reliable state-of-the-art operational modal analysis techniques should be used and these are presented in this paper. The methods are also automated, so that no human-interaction is required and the system can track the natural frequencies and damping ratios in a reliable manner.

2014 ◽  
Vol 13 (6) ◽  
pp. 644-659 ◽  
Author(s):  
Christof Devriendt ◽  
Filipe Magalhães ◽  
Wout Weijtjens ◽  
Gert De Sitter ◽  
Álvaro Cunha ◽  
...  

This article will present and discuss the approach and the first results of a long-term dynamic monitoring campaign on an offshore wind turbine in the Belgian North Sea. It focuses on the vibration levels and modal parameters of the fundamental modes of the support structure. These parameters are crucial to minimize the operation and maintenance costs and to extend the lifetime of offshore wind turbine structure and mechanical systems. In order to perform a proper continuous monitoring during operation, a fast and reliable solution, applicable on an industrial scale, has been developed. It will be shown that the use of appropriate vibration measurement equipment together with state-of-the art operational modal analysis techniques can provide accurate estimates of natural frequencies, damping ratios, and mode shapes of offshore wind turbines. The identification methods have been automated and their reliability has been improved, so that the system can track small changes in the dynamic behavior of offshore wind turbines. The advanced modal analysis tools used in this application include the poly-reference least squares complex frequency-domain estimator, commercially known as PolyMAX, and the covariance-driven stochastic subspace identification method. The implemented processing strategy will be demonstrated on data continuously collected during 2 weeks, while the wind turbine was idling or parked.


Sign in / Sign up

Export Citation Format

Share Document