Investigation of a Relative Weight Ratio of Graphite/Zinc Matrix Composite with a High-Resistance to Corrosion

2021 ◽  
Vol 900 ◽  
pp. 51-60
Author(s):  
Zainab Hassan ◽  
Mudhar Al-Obaidi

There has been a significant increase in the use of composite materials to reinforce metallic structures. Such an increase has been especially noted in marine and underground applications, where there is a higher corrosion impact. Whilst there have been several attempts to investigate the mechanical properties of several synthesized composite materials, few of these have analyzed the corrosion of such composite materials at different weight ratios. The aim of this paper is to explore the best weight ratios of a graphite/Zinc composite matrix that would yield the lowest corrosion rate for a variety of applications. The research is validated using experimentation based on six additives of graphite (1wt%, 2.5wt%, 4wt%, 6wt%, 8wt%, and 10wt%), which are used as reinforcements for a range of weight ratios. The additives were prepared using the powder metallurgy method. The corrosion rate for all specimens used was carried out at the room temperature of 27 °C. Analysis results showed that 1wt% of graphite additive has the highest corrosion resistance compared to other weight ratios tested. This has been verified by examining the microstructure of the composite using an optical microscope for 12h, 24h, and 48h of immersion time in a 1M HCl acid solution.

The current work aims to optimize the Al-Si alloy reinforced with B4C nanoparticles prepared through powder metallurgy technique. The sample was prepared with different weight percentage 0, 4 and 8; the size of the sample was 20 mm x 20mm and sintered in a furnace upto 500oC with argon gas and their by furnace cooled to room temperature. The samples were brushed to remove the slag present in it, and polished by emery paper. Then the samples were weighed in an electric balancing apparatus to measure the initial weight of the sample before dipping it into acid solution. The weight loss was measured to calibrate the corrosion rate of the samples for 9 days. Response surface methodology was designed for three factors at three levels with a response as corrosion rate. The Analysis of Variance (ANOVA) was used to identify the most influencing factor on corrosion rate. The normal probability plot, residual plot, and desirability plot demonstrates the influence of corrosion rate of the composites.


Author(s):  
Y. N. V. Santhosh Kumar ◽  
M. Vimal Teja

In these paper, composite structures for conventional metallic structures has many advantages because of higher specific stiffness and strength of composite materials is discussed. The automobile industry has shown increased interest in the replacement of steel spring with fiberglass composite leaf spring due to high strength to weight ratio. This work deals with the replacement of conventional steel leaf spring with a Mono Composite leaf spring using E-Glass/Epoxy. The design parameters were selected and analyzed with the objective of minimizing weight of the composite leaf spring as compar


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. A. Afifi

This paper is aimed at investigating the corrosion behavior of Pure and Zinc-graphite particles with percentage of 1, 3, and 5%, respectively. The composites were fabricated by powder metallurgy method. Corrosion tests were performed according to ASTM standard. Corrosion rate was calculated and it is found that in all cases the corrosion rate was decreasing with the increase in exposure time. Meanwhile, the microstructure of composites was imaged and analyzed using optical microscope and scanning electron microscope. It is observed that the best corrosion resistance was zinc with 1% Graphite while Zinc with 3% and 5% Graphite composites did not enhance the corrosion resistance comparing to pure Zinc.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 57
Author(s):  
Tri Siswanto Kamid ◽  
I.D.G Ary Subagia ◽  
I Ketut Gede Wirawan

Material komposit dengan laminasi serat penguat karbon dan basalt telah diproduksi melalui proses cetakan injeksi. Tujuan penelitian adalah menganalisa laju korosi material komposit oleh air laut. Perendaman komposit hibrida untuk masing-masing variasi dilakukan pada air laut dengan durasi waktu perendaman selama 2 minggu, 4 minggu, dan 6 minggu. Hasil uji menunjukkan seluruh variasi komposit hibrida mengalami penyerapan dibuktikan dengan meningkatnya massa benda uji dari setiap durasi waktu perendaman. Peningkatan massa untuk masing-masing komposit hibrida sangat besar terjadi pada minggu ke-2 (dua) yaitu 3,9%  untuk CFRP, 1,4% untuk B2C3B2C3, 1,3% untuk B4C6, 1,3% untuk C2B2C2B2C2, dan 1,5% untuk BFRP. Kemudian untuk durasi perendaman selanjutnya relatif tetap (constant). Dari hasil tersebut disimpulkan bahwa perendaman komposit hibrida dengan serat basalt/carbon/epoxy sangat rendah dari minggu ke minggu. Analisa SEM menunjukkan pada setiap komposit hibrida teramati terjadi korosi disebabkan karena serat basalt memiliki kandungan besi (Fe), tetapi laju korosi sangat rendah (< 0,5%). Efek korosi ditunjukkan dengan adanya zona delaminasi yang dapat menurunkan kekuatan dan keuletan dari komposit hibrida. Composite materials with carbon fiber and basalt fiber laminates have been produced through the injection molding process. The aim is to analyze the corrosion rate of composite materials by sea water. Immersion of hybrid composites for each variation was carried out on sea water with a duration of immersion time of 2 weeks, 4 weeks and 6 weeks. The test results showed that all variations of hybrid composites experienced absorption as evidenced by the increase in the mass of the specimen from each duration of immersion time. The mass increase for each hybrid composite was very large at the second week is 3.9% for CFRP, 1.4% for B2C3B2C3, 1.3% for B4C6, 1.3% for C2B2C2B2C2, and 1,5% for BFRP. Then for the duration of subsequent immersion it is relatively constant. From these results it was concluded that immersion of hybrid composites with basalt / carbon / epoxy fibers was very low from week to week. SEM analysis showed that each hybrid composite observed corrosion due to basalt fibers having iron (Fe) content, but the corrosion rate was very low (<0.5%). Corrosion effects are indicated by a delamination zone which can reduce the strength and ductile of hybrid composites.


2015 ◽  
Vol 766-767 ◽  
pp. 320-323 ◽  
Author(s):  
N. Karthik ◽  
S. Prabhu ◽  
Sahil Santosh ◽  
Ashutosh Singh

In the field of material science and engineering, there is a great impact ever since the invention of composites materials. High strength to weight ratio provides the attractive combination that moves composite materials into new era. The conventional materials like cast iron, steel, and aluminium alloy are replaced by the composite materials due to its superficial properties and could be applied in aerospace and automotive applications. Powder metallurgy fabrication technique is one of the best and attractive methods for producing metal matrix composites because of its better distribution of particles and reliability and cost in manufacturing. In this paper, composites based on aluminium alloy (Al 2024) reinforced with 10% weight fraction of hard ceramics like Aluminium oxide (Al2O3) and 10% weight fraction of Aluminium oxide (Al2O3) with 5% graphite particles is produced by Powder metallurgy method. Hardness and wear test are conducted for the Al 2024, Al-10%Al2O3, and Al-10% Al2O3-5% Graphite. In addition the surfaces of the composite are analyzed by SEM to study the wear of the composites.


Author(s):  
J. Alias

Much research on magnesium (Mg) emphasises creating good corrosion resistance of magnesium, due to its high reactivity in most environments. In this study, powder metallurgy (PM) technique is used to produce Mg samples with a variation of aluminium (Al) composition. The effect of aluminium composition on the microstructure development, including the phase analysis was characterised by optical microscope (OM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). The mechanical property of Mg sample was performed through Vickers microhardness. The results showed that the addition of aluminium in the synthesised Mg sample formed distribution of Al-rich phases of Mg17Al12, with 50 wt.% of aluminium content in the Mg sample exhibited larger fraction and distribution of Al-rich phases as compared to the 20 wt.% and 10 wt.% of aluminium content. The microhardness values were also increased at 20 wt.% and 50 wt.% of aluminium content, comparable to the standard microhardness value of the annealed Mg. A similar trend in corrosion resistance of the Mg immersed in 3.5 wt.% NaCl solution was observed. The corrosion behaviour was evaluated based on potentiodynamic polarisation behaviour. The corrosion current density, icorr, is observed to decrease with the increase of Al composition in the Mg sample, corresponding to the increase in corrosion resistance due to the formation of aluminium oxide layer on the Al-rich surface that acted as the corrosion barrier. Overall, the inclusion of aluminium in this study demonstrates the promising development of high corrosion resistant Mg alloys.


2021 ◽  
Vol 27 ◽  
pp. 102379
Author(s):  
Congji Jiang ◽  
Jun Yan ◽  
Xiangqian Wang ◽  
Shijie Wei ◽  
Pengli Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document