An Evaluation of Dictyophora indusiata Mucilage as a Binder in Tablet Formulations

2021 ◽  
Vol 901 ◽  
pp. 22-27
Author(s):  
Kanokporn Burapapadh ◽  
Narumon Changsan ◽  
Chutima Sinsuebpol ◽  
Phennapha Saokham

Dictyophora indusiata known as bamboo mushroom is an edible mushroom in Genus Dictyophora, Family Phallaceae that could produce highly viscous mucilage encased in the peridium. The viscous mucilage is clear-colorless hydrocolloid with high viscosity and high adhesive nature which made it possible to be developed into pharmaceutical excipients. This research work aimed at the application of the mucilage as a tablet binder. The mucilage was prepared as redispersible powder by lyphilization before used. The dried mucilage could be effectively used as a binder in paracetamol tablet formulations both as dry and wet binder. Increasing of the dried mucilage amount caused the stronger tablet with higher disintegration time. The optimum concentrations of the dried mucilage in tablet formulations were 2.0% w/w as dry binder and 1.0% w/w as wet binder. The obtained tablets revealed low friability and fast disintegration time. The drug dissolution was conformable to USP37 standard and comparable to that of commercial product. Accordingly, the Dictyophora indusiata mucilage could be functionally used as a tablet binder

2007 ◽  
Vol 57 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Gbenga Alebiowu ◽  
Oludele Itiola

Influence of process variables on release properties of paracetamol tablets A 23 factorial experimental design has been used to quantitatively study individual and interaction effects of the nature of binder (N), binder concentration (c) and relative density of tablet (d) on the disintegration time (DT) and dissolution times, t1, t50 and t90, of paracetamol tablet formulations. The factorial design was also used to study the quantitative effects of pregelatinization of starch binders on these parameters, i.e., N, c and d. In general, the most common ranking of the individual effects on DT, t1, t50 and t90 for native/native, pregelatinized/pregelatinized and native/pregelatinized starch binder formulations was c > d > N. For interaction effects, the most common ranking was N-c > c-d > N-d for all formulations. The results generally showed that c can considerably affect DT, t1, t50 and t90 of the tablets.


Author(s):  
Sylvester Okhuelegbe Eraga ◽  
Ogochukwu Augustina Meko ◽  
Magnus Amara Iwuagwu

The physicochemical properties of excipients play vital roles in the process of tablet manufacture. A comparative evaluation of the binding and disintegrant properties of xerogels of cassava and cocoyam starches with microcrystalline cellulose (MCC) in paracetamol tablet formulations was investigated. Cassava and cocoyam starches were extracted from their tubers following standard procedures. Xerogels of both starches were prepared and used to prepare batches of paracetamol granules for direct compression into tablets at concentrations of 3.8, 7.6 and 11.4 %w/w and with 7.6 %w/w MCC for comparison. Granules were analysed for their flow properties and drug-excipient compatibility and the tablets were evaluated for their tablets properties. The paracetamol granules prepared with the xerogel powders were comparable in flow properties with those made with MCC. Differential Scanning Calorimetry and Fourier Transform Infrared analyses revealed no interaction between the xerogel powders and paracetamol. Increase in concentrations of the xerogel powders led to an increase in hardness, wetting time, water sorption, disintegration time, drug release and a decrease in friability of the tablets. Tablets formulated with the starch xerogel powders met compendial requirements at 7.6 %w/w concentration. The study confirms the potentials of xerogels of cassava and cocoyam starches as dry granulation binders/disintegrants. Tablets made with the xerogel powders are superior to those made with MCC in terms of disintegration time but MCC produces harder and less friable tablets, as a superior binder.


Author(s):  
ANNU KUMARI ◽  
R. SANTOSH KUMAR

Objective: The aim of the research work is to develop a new superdisintegrant (starch malonate) which can help in enhancing the solubility and drug dissolution of poorly soluble drugs. Hence, starch malonate (new superdisintegrant) was prepared and has been evaluated for its superdisintegrant property by incorporating it into fast dissolving tablets of Aceclofenac. Methods: Superdisintegrant was developed by using esterification reaction. Prepared starch malonate was then subjected for different characterization tests (solubility, pH, melting point, swelling index, FTIR, DSC studies. 23 factorial design method was used to formulate fast dissolving tablets of aceclofenac employing starch malonate. Two known superdisintegrants croscarmellose sodium and crospovidone have been used along with starch malonate in combinations to develop fast dissolving tablets. Prepared tablets were then subjected to different tests for tablets like hardness, friability, disintegration time, dissolution studies. A stability study was performed to determine the stability of the formulation. Design expert study was conducted to know the interaction between different superdisintegrants and to select best optimized formulation in among all formulations. Results: Starch malonate prepared was found to be fine, free flowing slightly crystalline powder, insoluble in aqueous and organic solvents. Tablets of all formulations were of excellent quality concerning drug content (100±5%), hardness (3.8-4.2 kg/cm2), and friability (less than 0.15%). In all formulations, formulation F2 found to be optimized formulation with least disintegration time 38 S, less wetting time 17±0.08 s and enhanced percent dissolved rate in 5 min i.e., 99.84% as compared to other formulations. Conclusion: From this it was concluded that starch malonate can be used as a novel superdisintegrant to enhance the drug dissolution of poorly soluble drugs. Optimized formulation F2 showed enhanced drug dissolution at 5% concentration as compared to other formulation and showed least disintegration time and enhanced drug dissolution as compared to other formulations and pure drug.


2020 ◽  
Vol 19 (3) ◽  
pp. 459-465
Author(s):  
Chukwuemeka P. Azubuike ◽  
Uloma N. Ubani-Ukoma ◽  
Abiola R. Afolabi ◽  
Ibilola M. Cardoso-Daodu

Purpose: To evaluate the super-disintegrant potentials of acid modified Borassus aethiopum starch (AMS) in comparison with native starch (NS) and commercial disintegrant sodium starch glycolate (SSG). Methods: Compatibility of AMS with paracetamol powder was evaluated using Fourier transform infrared (FTIR) spectrophotometry. Seven batches of paracetamol granules and tablets were prepared by wet granulation. AMS and NS were employed as disintegrants at concentrations of 2.43, 4.86 and 9.72 %w/w, respectively while 4.86 %w/w SSG was used as standard disintegrant. All the batches of the granules were compressed under the same compression settings. The properties of the granules as well as those of the tablets were assessed. Results: AMS was compatible with paracetamol powder as no noticeable interaction was observed in FTIR study. The paracetamol tablets formulated using AMS as disintegrant demonstrated satisfactory friability, weight uniformity, hardness, and superior disintegration characteristics to the formulations containing NS and SSG as disintegrant. Even at a lower concentration (2.43 %w/w), AMS possessed better disintegrant property than NS and SSG. AMS and NS had dimensionless disintegrant quantity of 1.447 and 0.005, respectively. As expected, increase in AMS concentration showed a decrease in disintegration time. Conclusion: AMS could be a potential low-cost super-disintegrant in formulation of paracetamol tablets. Keywords: Acid modified starch, Borassus aethiopum, Disintegrant, Compatibility


2019 ◽  
Vol 22 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Sreebash Chandra Bhowmik ◽  
Marzia Alam ◽  
Md Saiful Islam Pathan

The purpose of the current study was to develop a fast dissolving polymeric oral thin film containing palonosetron hydrochloride having good mechanical properties, fast disintegration, dissolution and good drug content uniformity. Solvent casting method was used to prepare the films. Compatibility between drugs and excipients were studied using FTIR and HPLC. Nine different formulations of film from F1 to F9 were prepared using different concentration of polymer A at drug-polymer A ratio (1:26), (1:28), (1:30), (1:32), (1:34), (1:36), (1:38), (1:40), (1:42) and at polymer A-plasticizer B of (65:10), (70:10), (75:10), (40:10), (42.5:10), (45:10), (47.5:10), (50:10), (52.5:10), respectively. The in vitro dissolution study was carried out in phosphate buffer (pH 6.8) at 37±0.5oC and 50 rpm using USP XXIV paddle method. Physicochemical evaluations of all the batches were performed including weight variation, thickness, folding endurance, pH, in vitro disintegration and drug release, FTIR and content uniformity test. Maximum and minimum drug dissolution were found in F6 (108.7%) and in F1 (98.5%), respectively. The maximum and minimum disintegration time were in F9 (43.8 sec) and F1 (25 sec), respectively which demonstrated that disintegration of the film was directly proportional to the polymer A and plasticizer B concentration. It is quite evident from the present research work that the film prepared using polymer A-plasticizer B were smooth, mechanically strong and easy to peel out. Among all the batches, formulation F5 showed best results with respect to disintegration (33 sec), drug dissolution (105%), content uniformity (98.51%) and folding endurance (731). Therefore, it can be said that combination of polymer A and plasticizer B can be prospectively used for the preparation of palonosetron hydrochloride oral thin film. Bangladesh Pharmaceutical Journal 22(2): 228-234, 2019


2020 ◽  
Vol 10 (3-s) ◽  
pp. 17-25
Author(s):  
Inder Kumar ◽  
Dipima Chaudhary ◽  
Bhumika Thakur ◽  
Vinay Pandit

Objective: In the present research work, fast dissolving tablets of Piroxicam were formulated by two different techniques i.e. direct compression method and sublimation method using different superdisintegrants. Methods: Twelve formulations were prepared (PXM1 to PXM12) in which first six formulation were prepared by direct compression technique and other six formulation were prepared by sublimation method by using camphor as a sublimating agent. Result and Discussion: All the formulations were subjected for precompression, post compression parameters, and shows all the data within the specific limits. Formulation PXM4 containing 5 % crospovidone showed 99.480 ± 0.291 % drug release in 20 min which was more than the drug release of rest of the formulations. The optimized formulation PXM4 was compared with the marketed formulation and it revealed that drug release of PXM4 was found to be 99.397 ± 0.751 % in 20 min, which was greater than the marketed formulation. Finally, results were statistically analysed by the application of one way ANOVA and t-test. The stability study of the optimized formulation PXM4 showed no significant changes in, drug content, disintegration time and in-vitro drug release. Conclusion: Piroxicam can be successfully prepared using direct compression technique and it will enhance the drug dissolution, which will further increase absorption and bioavailability of the drug. Keywords: Direct compression, fast dissolving tablets, sublimation, Piroxicam.


2020 ◽  
Vol 16 (1) ◽  
pp. 31-37
Author(s):  
S.O. Eraga ◽  
D.N. Elue ◽  
M.A. Iwuagwu

Background: Natural materials have gained a lot of significance in the field of drug delivery because of their cost effectiveness and ready availability.Purpose: The study aimed at evaluating the direct compression property of microcrystalline cellulose from cassava fermentation waste in directly compressed paracetamol tablet formulations.Methods: Alkali delignification of the dried cassava fermentation fibres, followed by bleaching and acid depolymerisation was employed in the extraction of α-cellulose and conversion to microcrystalline cellulose (MCC). The MCC obtained and Avicel® were used at different concentrations (5.0-15 %w/w) to formulate batches of paracetamol tablets by directed compression. A comparative evaluation of the formulated paracetamol granules and tablets properties were undertaken.Results: The paracetamol granules formulated showed good flowability with Hausner’s ratios of 1.15-1.25, Carr’s indices of 13.10-20.00 % and angles of repose ≤ 34.41°. The formulated tablets showed good hardness (> 5.0 kgf) and disintegration time within 10 min. Only tablets containing 5.0 and 7.5 %w/w of the test MCC failed the BP dissolution test specification for tablets which stipulates that at least 70 % of the drug should be in solution after 30 min.Conclusion: This study has shown that the extracted MCC has direct compression ability evidenced in the mechanical strength of the formulated paracetamol tablets. The tablet properties of the formulated paracetamol tablets revealed pharmaceutically acceptable tablets though they were not comparable with Avicel® at all concentrations and the MCC may serve as an alternative local source for direct compression excipient. Keywords: Cassava, microcrystalline cellulose, direct compression, paracetamol, tablets


Author(s):  
R. SANTOSH KUMAR ◽  
ANNU KUMARI ◽  
B. KUSUMA LATHA ◽  
PRUDHVI RAJ

Objective: The aim of the current research is optimization, preparation and evaluation of starch tartrate (novel super disintegrant) and preparation of fast dissolving oral films of cetirizine dihydrochloride by employing starch tartrate. Methods: To check the drug excipient compatibility studies of the selected drug (Cetrizine dihydrochloride) and the prepared excipient i. e starch tartrate, different studies like FTIR (Fourier-transform infrared spectroscopy), DSC (Differential scanning calorimetry) and thin-layer chromatography (TLC) were carried out to find out whether there is any interaction between cetirizine dihydrochloride and starch tartrate. The solvent casting method was used for the preparation of fast dissolving films. The prepared films were then evaluated for thickness, folding endurance, content uniformity, tensile strength, percent elongation, in vitro disintegration time and in-vitro dissolution studies. Response surface plots and contour plots were also plotted to know the individual and combined effect of starch tartrate (A), croscarmellose sodium (B) and crospovidone (C) on disintegration time and drug dissolution efficiency in 10 min (dependent variables). Results: Films of all the formulations are of good quality, smooth and elegant by appearance. Drug content (100±5%), thickness (0.059 mm to 0.061 mm), the weight of films varies from 51.33 to 58.06 mg, folding endurance (52 to 67 times), tensile strength (10.25 to 12.08 N/mm2). Fast dissolving films were found to disintegrate between 34 to 69 sec. Percent dissolved in 5 min were found to be more in F1 formulation which confirms that starch tartrate was effective at 1%. Conclusion: From the research conducted, it was proved that starch tartrate can be used in the formulation of fast dissolving films of cetirizine dihydrochloride. The disintegration time of the films was increased with increase in concentration of super disintegrant.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 358 ◽  
Author(s):  
Chiara R. M. Brambilla ◽  
Ogochukwu Lilian Okafor-Muo ◽  
Hany Hassanin ◽  
Amr ElShaer

Three-dimensional (3D) printing is a recent technology, which gives the possibility to manufacture personalised dosage forms and it has a broad range of applications. One of the most developed, it is the manufacture of oral solid dosage and the four 3DP techniques which have been more used for their manufacture are FDM, inkjet 3DP, SLA and SLS. This systematic review is carried out to statistically analyze the current 3DP techniques employed in manufacturing oral solid formulations and assess the recent trends of this new technology. The work has been organised into four steps, (1) screening of the articles, definition of the inclusion and exclusion criteria and classification of the articles in the two main groups (included/excluded); (2) quantification and characterisation of the included articles; (3) evaluation of the validity of data and data extraction process; (4) data analysis, discussion, and conclusion to define which technique offers the best properties to be applied in the manufacture of oral solid formulations. It has been observed that with SLS 3DP technique, all the characterisation tests required by the BP (drug content, drug dissolution profile, hardness, friability, disintegration time and uniformity of weight) have been performed in the majority of articles, except for the friability test. However, it is not possible to define which of the four 3DP techniques is the most suitable for the manufacture of oral solid formulations, because the selection is affected by different parameters, such as the type of formulation, the physical-mechanical properties to achieve. Moreover, each technique has its specific advantages and disadvantages, such as for FDM the biggest challenge is the degradation of the drug, due to high printing temperature process or for SLA is the toxicity of the carcinogenic risk of the photopolymerising material.


Sign in / Sign up

Export Citation Format

Share Document