Development of Curcumin-Loaded Polymeric Mixed Micelle for Skin Moisturizing Antioxidant Formulation

2021 ◽  
Vol 901 ◽  
pp. 98-103
Author(s):  
Sunee Channarong ◽  
Parapat Sobharaksha ◽  
Chanchai Sardseangjun ◽  
Panipak Vasvid

Abstract The aim of this study was to fabricate curcumin-loaded polymeric mixed micelle which was a new nanocarrier of therpeutic agent for skin uses. Curcumin was extracted from dried turmeric rhizomes using ethanol and recrystallized. The purity of curcumin was 79±3.6 %w/w. Six curcumin-loaded polymeric micelles (PM1-PM6) were prepared by simple dissolution method using poloxamer 407 (5% and 10%) as a main core structure. PEG-40 hydrogenated castor oil (PEG-40HCO) was incorporated at two percentages (2.5% and 5.0%) to study the effect on the nanoparticle characteristics. The average particle sizes of PM1-PM6 were in the range of 33.3±6.6 nm to 171.3±52.8 nm. The entrapment efficiency and the loading capacity of curcumin were in the range of 47.45%-77.35% and 0.048%w/w-0.078%w/w, respectively. When PEG-40HCO was incorporated in to the polymeric micelles, the particle size decreased and the entrapment efficiency increased. Thus, PM4 and PM5 were selected for further study. Moisturizing antioxidant creams containing 0.005%w/w of curcumin loaded in PM4, PM5 and curcumin simply dissolved in propylene glycol (PG) were formulated. The resulted formulations showed good spreadability and good characteristics. After being subjected to accelerated test, all of the formulations remained with characteristic color, pH and showed no phase separation. The stability data showed that the moisturizing antioxidant creams were stable for the whole 3 months after storage at accelerated temperature (45°C/75%RH). The study demonstrated that polymeric mixed micelle spontaneously encapsulated a poorly water-soluble curcumin and increased the solubility up to 250 folds. The developed moisturizing cream containing 0.005%w/w of curcumin resulted a greenish-yellow color preparation. It had tolerable physicochemical properties based on curcumin content, pH and viscosity under the harsh condition. The cream also had satisfactory antioxidant activity, which can be regarded as an effective and acceptable therapeutic or skincare products for topical uses.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 476 ◽  
Author(s):  
Pescina ◽  
Lucca ◽  
Govoni ◽  
Padula ◽  
Favero ◽  
...  

This paper addresses the problem of ocular delivery of lipophilic drugs. The aim of the paper is the evaluation of polymeric micelles, prepared using TPGS (d-α-Tocopheryl polyethylene glycol 1000 succinate), a water-soluble derivative of Vitamin E and/or poloxamer 407, as a vehicle for the ocular delivery of dexamethasone, cyclosporine, and econazole nitrate. The research steps were: (1) characterize polymeric micelles by dynamic light scattering (DLS) and X-ray scattering; (2) evaluate the solubility increase of the three drugs; (3) measure the in vitro transport and conjunctiva retention, in comparison to conventional vehicles; (4) investigate the mechanisms of enhancement, by studying drug release from the micelles and transconjunctival permeation of TPGS; and (5) study the effect of micelles application on the histology of conjunctiva. The data obtained demonstrate the application potential of polymeric micelles in ocular delivery, due to their ability to increase the solubility of lipophilic drugs and enhance transport in and across the conjunctival epithelium. The best-performing formulation was the one made of TPGS alone (micelles size ≈ 12 nm), probably because of the higher mobility of these micelles, an enhanced interaction with the conjunctival epithelium, and, possibly, the penetration of intact micelles.


Author(s):  
Mohini E. Shinde ◽  
Mitesh P. Sonawane ◽  
Avish D. Maru

Solubility is an essential factor for drug effectiveness. Simvastatin is poorly water-soluble drug and its bioavailability is very low. Nanosuspension is one of those approach which can tremendously enhance the effective surface area of drug particles by reducing the particle size and there by increases the rate of dissolution and hence improve bioavailability. The main purpose of the present investigation was to increase the saturation solubility of simvastatin by preparation of nanosuspension. Nanosuspension of simvastatin were prepared by nanoprecipitation method using hydroxypropyl cellulose as stabilizer and sodium lauryl sulphate as surfactant. Prepared nanosuspension was evaluated for its particle size, total drug content, entrapment efficiency and saturation solubility study. On the basis of the evaluation, the best batch F8 formulation demonstrated highest drug content and entrapment efficiency with average particle size of 0.004µm. The saturation solubility studies show the solubility of the prepared nanosuspension has increased as compared to the pure drug due to the particle size reduction. The nanosuspension of simvastatin could be successfully prepared and can be concluded that the nanosuspension formulation is a promising approach to enhance the solubility. The nanoprecipitation is a simple and effective method to produce nano sized particles of poorly water-soluble drugs with enhance solubility.


Molekul ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 30 ◽  
Author(s):  
Gusrizal Gusrizal ◽  
Sri Juari Santosa ◽  
Eko Sri Kunarti ◽  
Bambang Rusdiarso

Silver nanoparticles capped with m-hydroxybenzoic acid and p-hydroxybenzoic have been successfully synthesized, but the long-term stability data of these silver nanoparticles are not available. In this paper, we report the stability of these two types of silver nanoparticles for a period of 40 weeks observation based on the change of surface plasmon resonance spectra of silver nanoparticles. Silver nanoparticles were synthesized by reduction of silver nitrate with m-hydroxybenzoic acid and p-hydroxybenzoic acid without addition of capping agent. The presence of silver nanoparticles was indicated by the appearance of yellow color due to the surface plasmon resonance of silver nanoparticles. The resulted silver nanoparticles were stored at room temperature and further UV-visible spectrophotometer was used to follow the change in surface plasmon resonance spectra. The surface plasmon resonance spectra of silver nanoparticles were overlapped for the first 18 weeks, followed by little change in the position of absorption maxima (lmax), peak intensity, and width of the absorption peak until the week of 40. Silver nanoparticles capped with m-hydroxybenzoic acid and silver nanoparticles capped with p-hydroxybenzoic acid were highly stable which should make them suitable for further applications. The results show the potential of m-hydroxybenzoic acid and p-hydroxybenzoic acid to become a new reducing agent in the synthesis of highly stable silver nanoparticles. The m-hydroxybenzoic acid and p-hydroxybenzoic acid appeared to act as both reducing and capping agent.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 440
Author(s):  
Siriporn Okonogi ◽  
Pimpak Phumat ◽  
Sakornrat Khongkhunthian ◽  
Kullapop Suttiat ◽  
Pisaisit Chaijareenont

Candida albicans is a common overgrowth in people wearing dentures. Long-term use of antifungal chemicals carries a risk of toxic side effects. This study focused on the edible Piper betle extract because of its safety. The broth dilution method was applied for antifungal determination of the ethyl acetate fractionated extract (fEA) and fEA-loaded polymeric micelles (PMF). The PMF was prepared by thin-film hydration using poloxamer 407 as a polymer base. The results found that the weight ratio of fEA to polymer is the main factor to obtain PMF system as a clear solution, nanoparticle sizes, narrow size distribution, negative zeta potential, and high entrapment efficiency. The activity of PMF against C. albicans is significantly higher than fEA alone, with a minimum fungicidal concentration of 1.5 mg/mL. PMF from 1:3 ratio of fEA to polymer is used to develop a denture-soaking solution contained 1.5 mg fEA/mL (PMFS). A clinical study on dentures of 15 volunteers demonstrated an 86.1 ± 9.2% reduction of C. albicans after soaking the dentures in PMFS daily for 14 days. Interestingly, PMFS did not change the hardness and roughness of the denture base resins. The developed PMFS may serve as a potential natural denture-soaking solution against candidiasis in denture wearers.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3450
Author(s):  
Cheng Tang ◽  
Xiaoming Chen ◽  
Hua Yao ◽  
Haiyan Yin ◽  
Xiaoping Ma ◽  
...  

The purpose of this study was to develop mixed polymeric micelles with high drug loading capacity to improve the oral bioavailability of icaritin with Soluplus® and Poloxamer 407 using a creative acid-base shift (ABS) method, which exhibits the advantages of exclusion of organic solvents, high drug loading and ease of scaling-up. The feasibility of the ABS method was successfully demonstrated by studies of icaritin-loaded polymeric micelles (IPMs). The prepared IPMs were characterized to have a spherical shape with a size of 72.74 ± 0.51 nm, and 13.18% drug loading content. In vitro release tests confirmed the faster release of icaritin from IPMs compared to an oil suspension. Furthermore, bioavailability of icaritin in IPMs in beagle dogs displayed a 14.9-fold increase when compared with the oil suspension. Transcellular transport studies of IPMs across Caco-2 cell monolayers confirmed that the IPMs were endocytosed in their intact forms through macropinocytosis, clathrin-, and caveolae-mediated pathways. In conclusion, the results suggested that the mixed micelles of Soluplus® and Poloxamer 407 could be a feasible drug delivery system to enhance oral bioavailability of icaritin, and the ABS method might be a promising technology for the preparation of polymeric micelles to encapsulate poorly water-soluble weakly acidic and alkaline drugs.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1069 ◽  
Author(s):  
Elena Giuliano ◽  
Donatella Paolino ◽  
Maria Chiara Cristiano ◽  
Massimo Fresta ◽  
Donato Cosco

Rutin is a flavone glycoside contained in many plants, and exhibits antioxidant, anti-inflammatory, anticancer, and wound-healing properties. The main disadvantage related to the use of this molecule for pharmaceutical application is its poor bioavailability, due to its low solubility in aqueous media. Poloxamer 407-hydrogels show interesting thermo-sensitive properties that make them attractive candidates as pharmaceutical formulations. The hydrophobic domains in the chemical structure of the copolymer, a polymer made up of two or more monomer species, are useful for retaining poorly water-soluble compounds. In this investigation various poloxamer 407-based hydrogels containing rutin were developed and characterized as a function of the drug concentration. In detail, the Turbiscan stability index, the micro- and dynamic rheological profiles and in vitro drug release were investigated and discussed. Rutin (either as a free powder or solubilized in ethanol) did not modify the stability or the rheological properties of these poloxamer 407-based hydrogels. The drug leakage was constant and prolonged for up to 72 h. The formulations described are expected to represent suitable systems for the in situ application of the bioactive as a consequence of their peculiar versatility.


Author(s):  
Ranjitha R ◽  
Elango K ◽  
Devi Damayanthi R ◽  
Sahul Hameed Niyaz U

The present investigations was aimed to improve the solubility, to release the drug in a controlled manner for extended period of time, reduce dose dependent side effects and improve the bioavailability of a poorly water soluble BCS class II drug of Lovastatin by formulating it as Nanosponges drug delivery system. Lovastatin Nanosponges were formulated by emulsion solvent evaporation method using Eudragit RS 100 and Ethyl Cellulose as a polymers, PVA as a stabilizer and finally enclosed in hard gelatin Capsules. The prepared Nanosponges were evaluated for FTIR, particle size, polydispersity index (PDI), zeta potential, morphological characteristics by scanning electron microscopy (SEM), production yield, entrapment efficiency, solubility studies, in vitro drug release studies, release kinetics study, stability studies, Flow property and porosity. The optimized formulation filled in capsules and Post formulation parameters of capsule were determined. FTIR studies showed no interaction between drug and excipients. Percentage yield of all the formulation (F1-F10) was found to be in the range of 85.83 to 99.85%. The entrapment efficiency of all the formulations was found to be in the range of 61.68 to 91.18%, among all the formulations F3 (90.04%) and F8 (91.18%) shows high entrapment efficiency. The solubility of all formulation improved (from insoluble to slightly soluble) compared to pure drug of Lovastatin. Among all the formulations F3 (98.15%) and F8 (97.57%) shown complete drug release at the end of 12th hrs. The average particle size of optimized formulation F3 and F8 was found to be 727.0 nm and 769.5 nm respectively. SEM images of optimized formulation showed that the Nanosponges were spherical with numerous pores on their surface, uniform and spongy in nature. The release kinetics of the optimized formulation was best fitted into Higuchi model and showed zero order drug release with Non Fickian diffusion. Stability studies indicated that the formulation is stable as per ICH guidelines. The flow property measurements for optimized formulation observed good were its filled in capsules. Post formulation parameters of capsule were comply with official specifications. They concluded that the both polymers used were efficient carriers for Lovastatin Nanosponges.


Author(s):  
Shital V. Sonawane ◽  
Avish D. Maru ◽  
Mitesh P. Sonawane

Oral nanosuspension of ritonavir was prepared by antisolvent precipitation method using various polymers such as Eudragit RS100, Poloxamer 407, SLS and Methanol.The effect of eudragit RS100 and poloxamer 407 used stabilizer and SLS is surfactant was investigated on particle size and distribution, drug content, entrapment efficiency was observed. Ritonavir is having low solubility and low permeability drug belonging to class-IV according to BCS. Drug-excipient compatibility and amorphous nature of ritonavir drug is prepared nanosuspension was confirmed by FTIR, DSC and Motic microscope studies, respectively. The nanosuspension was further evaluated for drug content, saturation solubility study and entrapment efficiency. The average particle size of ritonavir nanaosuspensions formulas was observed from 0.006 µm to 0.017 µm. The studied in the solubility and dissolution rate there are the increase solubility and dissolution rate of ritonavir nanosuspension.


Author(s):  
Iman M. Alfagih ◽  
Bushra AlQuadeib ◽  
Basmah Aldosari ◽  
Alanood Almurshedi ◽  
Mohamed M. Badran ◽  
...  

Aims: To improve the dissolution of indomethacin through developing liquid indomethacin loaded cubosomes dispersion for oral delivery. Methodology: Glyceryl monooleate based indomethacin loaded cubosomes dispersion were prepared using Taguchi design to study the effect of indomethacin to the disperse phase ratio and poloxamer 407 (PLX%) concentrations on the particle size and entrapment efficiency (%EE). Furthermore, in vitro release in phosphate buffer (pH 6.8), and morphology were investigated. Also, the stability of indomethacin loaded cubosomes dispersions was examined after 6 months storage at 25°C in the dark. Results: The prepared indomethacin cubosomes dispersions were in the nanoscale (184.53±0.7 to 261.33±0.8 nm) with reasonable %EE (49.30±2.6 to 95.55±3.4 %). Moreover, a biphasic release profile was predominant for all formulations, up to 50% of payload released after 2h followed by a second continuous sustained release phase over 24h. The kinetics of indomethacin release was best explained by Higuchi model and the mechanism of drug release from these cubosomes dispersions was by fickian diffusion mechanism. In general, the indomethacin loaded cubosomes dispersions were stable after 6 months storage at 25°C in the dark. Conclusion: Indomethacin loaded cubosomes dispersions proved to be a successful platform to encapsulate and enhance the release of indomethacin with a good stability profile over 6 months.


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


Sign in / Sign up

Export Citation Format

Share Document