Preparation and Characterization of Starch Active Interface Calcium Carbonate for Biodegration

2022 ◽  
Vol 905 ◽  
pp. 238-245
Author(s):  
Xiao Han ◽  
Yong Hua Lao ◽  
Jun Lan ◽  
Si Qi Tan ◽  
Jian Hui Song ◽  
...  

Calcium carbonate is so hard to be further developed in polymer applications because it is difficult to combine with other materials. Starch-coated calcium carbonate was prepared by using starch as the main modifier and sodium stearate and sodium hexametaphosphate as the auxiliary modifiers. Optimal modification conditions were tested by single factor experiment and orthogonal experiment optimization. Manifestation was evaluated with the help of Fourier infrared spectrometer (FT-IR) and laser particle size analyzer and other test instruments. Results showed that a starch film was successfully coated on the surface of calcium carbonate, and the edges and corners of the modified coated calcium carbonate were passivated, and the particles were rounded. The active interface calcium carbonate has a broad application prospect in the field of degradable biomaterials.

2012 ◽  
Vol 724 ◽  
pp. 159-162
Author(s):  
Yan Chen ◽  
Hong Ping Zhang ◽  
Xiao Yan Lin ◽  
Ming Qi Chen ◽  
Yong Man Jiang

The influences of processing parameters on the tensile strength (TS) of KGM/CaCO3composite films (KCaCF) were investigated through orthogonal experiment method. Calcium carbonate and KCaCF were characterized, respectively, by XRD, laser diffraction particle size analyzer, zeta potential analyzer and SEM. The results showed that micron-sized calcite CaCO3crystals with-16.4 mv of Zeta potential were synthesized. Calcium carbonate dispersion was blended with KGM to fabricate KCaCF. The mass of CaCO3, KGM and swelling time affected TS of composite films differently, but didnt reach the significant level (p>0.05). The optimal preparation process for KCaCF is that 5.0% (wt) of KGM powder is added into the dispersion with 2.0% (wt) of CaCO3, swelling for 1.0 hour at 50 °C and pH 8.0 and then poured onto plate and dried at 50 °C for 15 h.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


2016 ◽  
Vol 675-676 ◽  
pp. 209-212 ◽  
Author(s):  
Wichian Siriprom ◽  
Nirun Witit-Anun ◽  
Auttapol Choeysuppaket ◽  
T. Ratana

In this study were to explore the properties of interaction between cellulose and calcium carbonate particle (CaCO3) which derive from Papia Undulates Shell in procedure of biocomposite synthesis. The structural properties of cellulose powder Papia Undulates Shell and cellulose-calcium carbonate composite film were investigated by using X-ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) and the compositions of cellulose/CaCO3 biocomposite film were studied by Energy Dispersive X-ray Fluorescence (EDXRF). The experimental results demonstrated the morphology of Papia Undulates Shell were crystalline aragonite phase and the cellulose have structural as amorphous-crystalline but after film forming the composite film between cellulose and Papia Undulates Shell also have amorphous structural. The result of FTIR used to confirmed the formation of bonding between molecular, it indicated that the cellulose/CacO3 biocomposite film had good biocompatibility due to the biocomposite film have both characteristic feature of CO3-2 group (~874 cm-1 and ~713 cm-1) and the glucose of cellulose at ~1635, ~1064 and ~946 cm-1. Another that, the result from EDXRF shown the chemical composition of organic compound of cellulose/CaCO3 biocomposite film was highest with 99.437 while the Papia Undulates Shell have 0.341 Wt% with corresponding with the ratio of filler material which mixture as 1%. So that, the cellulose/calcium carbonate bicomposite film could be candidate for biocomposite film application.


2011 ◽  
Vol 194-196 ◽  
pp. 781-784
Author(s):  
Fa Mei Feng ◽  
Jia Qing Xie ◽  
Li Ke Zou ◽  
Bin Xie

Well-dispersed CeO2 nanoparticles were successfully prepared in a simple system composed of sodium bis (2-ethylhexyl) sulfosuccinate (AOT)- octane-water (W/O) microemulsion in this paper. The morphology and microstructure of the products were characterized by the laser particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), differential scanning calorimeter (DSC) and transmission electron microscope (TEM). It was found that the CeO2nanoparticles obtained from this method have well-proportioned size distributions; the surfactant (AOT) molecule was adsorbed on the surface of CeO2nanoparticles precursor, which is favorable for the dispersion of CeO2nanoparticles; the CeO2nanoparticles calcined was a crystal of the cubic structure. In addition, the mechanism on the formation of the CeO2nanoparticles was also proposed in this paper.


2010 ◽  
Vol 658 ◽  
pp. 49-52 ◽  
Author(s):  
Wen Kun Zhu ◽  
Xue Gang Luo ◽  
An Kai Luo ◽  
Xuan Liang

Calcium carbonate with various structures and morphologies were prepared under double injection of the CaCl2 and Na2CO3 solutions with molar ratio of 1:1 at 30 °C, taking lignin as the induction agents. They were characterized by scanning electron microscopy, infrared spectroscopy thermal analysis and X-ray diffraction. The synthesis mechanism was also discussed. The results showed that calcium carbonate of different shape were obtained with the concentration of lignin at 10g/L, 20g/L and 30g/L, respectively, under 30°C while CaCl2 and Na2CO3 were kept at the same concentration of 0.5mol/L. The size of the particles was in a range between 3 and 5μm and the particles were calcites. Compared with the normal calcium carbonate, the compound has advanced thermal decomposition behavior. Fourier transform infrared spectroscopy (FT-IR) analysis revealed the presence of lignin and calcite. The electrostatic interaction of Ca2+ with lignin and the complementary of stereo-structure play important roles in the formation of Dumbbell Shaped Calcium Carbonate.


2015 ◽  
Vol 1120-1121 ◽  
pp. 275-280
Author(s):  
Hua Lin ◽  
Qing Li ◽  
Mu Feng ◽  
Li Zhao Qin

An efficient method of preparing nanostarch using high-intensity ultrasonic irradiation and acid hydrolysis was discussed. The transmission electron microscope (TEM) showed that the nanosized starch particles were in shape of sphere with the size of 80-120 nm, and their surfaces were rough with many flocci. The Fourier transform infrared spectrometer (FT-IR) revealed that the products maintained the original biological characteristics, and the molecules did not undergo any chemical changes. In addition, the effects of experimental conditions were analyzed and a plausible mechanism was proposed to explain the formation of the nanostarch.


2020 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Henni Rosaini ◽  
Rina Wahyuni ◽  
Boyke Panata Sinaga ◽  
Wahyu Margi Sidoretno

Celery (Apium graveolens L) is a plant of Apiaceae family which contains flavonoids, saponins, tannins, essential oils, apiin, apigenin, choline, asparagine, vitamin A, B, C. Apigenin contained in celery included in the BCS (Biopharmaceutics Classification System)  class II, which has low solubility and high permeability drugs. One method for increasing solubility is the nanocrystal method. Where the purpose of this study was to see the effect of differences in the concentration of poloxamer 188 on the characterization of nanocrystal. The results of the particle size analyzer (PSA) showed particle size distribution in formula 1 the concentration of poloxamer 188 40% 6 hour grinding time of 1648.5 nm with a potential zeta value of -11.2. While the formula 2 concentration of poloxamer 188 50% and formula 3 the concentration of poloxamer 188 60% with a 5 hour grinding time of 1049.6 and 1483.2 with a potential zeta value of -12.5 and -8.9. From the FT-IR analysis shows the presence of clusters in formulas 1, 2, and 3 which are not found in apigenin which is a celery marker compound, on the contrary there are groups on apigenin which are not found in formulas 1, 2, and 3.


2020 ◽  
Vol 21 (4) ◽  
pp. 170
Author(s):  
Muflikhah Muflikhah ◽  
Wildan Zakiah Lubis ◽  
Irma Septi Ardiani ◽  
Khoirotun Nadiyyah ◽  
Sulistioso Giat Sukaryo

SYNTHESIS AND CHARACTERIZATION OF HPMC/HAp/Fe3O4 COMPOSITE FOR HYPERTHERMIA APPLICATION. Magnetic material become subject of intense research for hyperthermia application, and injectable magnetic hyperthermia for bone cancer is one of this research interest. In this study, composite of hydroxyapatite (HAp) and Fe3O4 in Hydroxypropyl-methyl cellulose (HPMC) matrix (HPMC/HAp/Fe3O4) has been synthesized in gel form that are expected can be applied for injectable bone substitute (IBS) in hyperthermia therapy. Composites were made using conventional methods by mixing HAp powder with ferrofluid Fe3O4 in HPMC solution. The composition of the composites were varied with the mass comparison of HPMC: HAp: Fe3O4 was 1: 0: 0; 1: 3: 0; 1: 2: 0.5; 1: 1: 0.25; and 1: 0: 3. The physical, chemical, and magnetic properties of the composites were characterized using X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometry (FT-IR), Particle Size Analyzer (PSA), and Vibrating Sample Magnetometer (VSM). The XRD characterization results of the HPMC/HAp/Fe3O4 composite showed the crystalline phase of the constituent components. Saturation magnetization of the HPMC/HAp/Fe3O4 composite was 2.72 emu/g and 1.79 emu/g for the composition of 1: 2: 0.5 and 1:1:0.25 respectively. HPMC/HAp/Fe3O4 composite has superparamagnetic and biocompatible properties, so that can be applied as IBS in hyperthermia therapy for bone cancer.


2012 ◽  
Vol 562-564 ◽  
pp. 512-515
Author(s):  
Yun Xian Yang ◽  
Ji Ping Yang ◽  
Bing Zhou ◽  
Jing Yu Zhang

Combination of vinyl carbazole and thiophene groups’ excellent thermal properties and optical properties, a novel polymer named poly(2,7-bi-2-thienyl-9-vinyl-9-H-carbazole) was synthesized via radical polymerization and Suzuki reaction. The polymer was characterized using Fourier transform infrared spectrometer(FT-IR), gel permeation chromatography(GPC), differential scanning calorimetry(DSC), and X-Ray fluorescence spectrometer(XRF). It was found that this π-conjugated polymer containing vinyl carbazole and thiophene groups gave a high glass transition temperature (Tg=251°C). This feature made poly(2,7-bi-2-thienyl-9-vinyl-9-H-carbazole) possessing an excellent thermal performance.


2021 ◽  
pp. 002199832199641
Author(s):  
Ana P de Moura ◽  
Enio HP da Silva ◽  
Vanessa S dos Santos ◽  
Miguel F Galera ◽  
Flaminio CP Sales ◽  
...  

Due to its exceptional biocompatibility, Polyurethane (PU) reinforced with calcium carbonate (CaCO3) is a composite material with significant biomedical applications. However, much of the currently known mechanical and chemical information regarding composites has been obtained at low and moderate CaCO3 content levels. This study employs experimental and theoretical tools to evaluate the structural, morphological, and mechanical properties of pristine polyurethane, and when doped with CaCO3 at 25 and 50 wt.%. In the experiments the samples are characterized using X-ray diffraction (XRD), infrared spectrophotometry (FT-IR), scanning electron microscopy (SEM), and tensile and flexural mechanical tests, while theoretical calculations are performed to evaluate the carbonate-polymer interaction. The XRD and FT-IR results indicate that CaCO3 is at the calcite phase and that PU-CaCO3 materials exhibit a broadening of bands related to the NH2 group. This result is explained using theoretical calculations that demonstrate a weak interaction between those molecules with the CaCO3 surface, where the molecule-calcite interaction occurs primarily through the NH2 molecular link. With respect to mechanical behaviour, the results show less fracture resistance and greater stiffness for the materials containing CaCO3, compared to those containing only PU. These results are explained in terms of the stress concentration due to CaCO3 within the polymer. Finally, the results detailed in this paper show that a high calcium carbonate loading is suitable for increasing the rigidity and decreasing the fracture toughness of the biomaterial, in association with a reduction of the plastic region.


Sign in / Sign up

Export Citation Format

Share Document