Sustainable Construction through Characterization of PET Bricks in Urban Areas

2021 ◽  
Vol 1047 ◽  
pp. 143-150
Author(s):  
Jeanmpierre Castro ◽  
Zenner Chávez ◽  
Chaviguri Pool ◽  
Aarón Amarillo ◽  
Mario Chauca

The Plastic especially that used for beverage containers generates large tons of daily waste, currently being the first waste material that accumulates the most in our cities. A problem that increases when one takes into account that it is a material that takes around 500 years to fully degrade. In recent years, the development of ideas in the use and recycling of PET bottles has increased worldwide due to the level of the ecological problem it poses. There are processes that reuse waste beverage containers for the elaboration of construction elements another of its magnificent advantages is the simplicity in its production process. They do not require firing and, unlike the conventional brick manufacturing process that joins cement and sand, for the manufacture of a PET brick the sand is replaced by particles of PET plastic from twenty waste bottles, with which we obtain a much more alternative ecological sustainable,

Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


2019 ◽  
Vol 13 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Vishal Ahuja ◽  
Aashima Sharma ◽  
Ranju Kumari Rathour ◽  
Vaishali Sharma ◽  
Nidhi Rana ◽  
...  

Background: Lignocellulosic residues generated by various anthropogenic activities can be a potential raw material for many commercial products such as biofuels, organic acids and nutraceuticals including xylitol. Xylitol is a low-calorie nutritive sweetener for diabetic patients. Microbial production of xylitol can be helpful in overcoming the drawbacks of traditional chemical production process and lowring cost of production. Objective: Designing efficient production process needs the characterization of required enzyme/s. Hence current work was focused on in-vitro and in-silico characterization of xylose reductase from Emericella nidulans. Methods: Xylose reductase from one of the hyper-producer isolates, Emericella nidulans Xlt-11 was used for in-vitro characterization. For in-silico characterization, XR sequence (Accession No: Q5BGA7) was used. Results: Xylose reductase from various microorganisms has been studied but the quest for better enzymes, their stability at higher temperature and pH still continues. Xylose reductase from Emericella nidulans Xlt-11 was found NADH dependent and utilizes xylose as its sole substrate for xylitol production. In comparison to whole cells, enzyme exhibited higher enzyme activity at lower cofactor concentration and could tolerate higher substrate concentration. Thermal deactivation profile showed that whole cell catalysts were more stable than enzyme at higher temperature. In-silico analysis of XR sequence from Emericella nidulans (Accession No: Q5BGA7) suggested that the structure was dominated by random coiling. Enzyme sequences have conserved active site with net negative charge and PI value in acidic pH range. Conclusion: Current investigation supported the enzyme’s specific application i.e. bioconversion of xylose to xylitol due to its higher selectivity. In-silico analysis may provide significant structural and physiological information for modifications and improved stability.


2021 ◽  
pp. 1-11
Author(s):  
Song Gang ◽  
Wang Xiaoming ◽  
Wu Junfeng ◽  
Li Shufang ◽  
Liu Zhuowen ◽  
...  

In view of the production quality management of filter rods in the manufacturing and execution process of cigarette enterprises, this paper analyzes the necessity of implementing the manufacturing execution system (MES) in the production process of filter rods. In this paper, the filter rod quality system of cigarette enterprise based on MES is fully studied, and the constructive information management system demand analysis, cigarette quality control process, system function module design, implementation and test effect are given. This paper utilizes the Fuzzy analytic hierarchy process to find the optimal system for processing the manufacturing of cigarette. The implementation of MSE based filter rod quality information management system for a cigarette enterprise ensures the quality control in the cigarette production process. Through visualization, real-time and dynamic way, the information management of cigarette production is completed, which greatly improves the quality of cigarette enterprise manufacturing process.


2021 ◽  
Vol 13 (5) ◽  
pp. 2678
Author(s):  
Nicolas Brusselaers ◽  
Koen Mommens ◽  
Cathy Macharis

The urban built environment concentrates due to the growing urbanization trend, triggering construction and renovation works in urban areas. Although construction works often revitalize cities upon completion, the associated logistics activities engender a significant financial and environmental footprint if not handled appropriately. Cities have the largest potential to reduce negative impacts through requirements on construction logistics. However, today, there is a lack of knowledge within cities on how to set such demands and how to involve and manage the numerous and varying stakeholders in these processes. This paper presents a participatory decision-making framework for the governance of urban construction logistics on economic, environmental and societal levels, building further on the Multi-Actor Multi-Criteria Analysis (MAMCA). The framework was then implemented on a use case in the dense urban Brussels-Capital Region (Belgium), gathering a wide variety of stakeholders in the context of a sustainable Construction Logistics Scenario (CLS) evaluation. Special attention was paid on the identification of implementation barriers and the role of governments to facilitate the introduction and city-wide roll-out of novel CLS. Findings show how different processes are site-, actor- and condition-specific, thereby delivering a common built object which is often based on different motivations and concerns. The study proposes a flexible, replicable and upscalable framework both from an inter- and intracity perspective, which can serve to support (1) the management of processes and CLS, (2) the management of people and the community, and (3) the project and city, in the context of multi-level governance.


1996 ◽  
Vol 30 (3-4) ◽  
pp. 363-376 ◽  
Author(s):  
M.E. Pintado ◽  
J.A.Lopes da Silva ◽  
F.X. Malcata

2011 ◽  
Vol 314-316 ◽  
pp. 1944-1947 ◽  
Author(s):  
Jozef Maščeník ◽  
Stefan Gaspar

Production of components, necessary for the construction of the machine resp. or device is a demanding manufacturing process. One of the possibilities of increasing efficiency and production quality is the introduction of unconventional technologies to the production process. Knowing the dependence of the impact of non-conventional technologies on the mechanical properties of products and their subsequent verification is an important aspect when designing and manufacturing them. The article deals with the impact of used unconventional technology, that means laser, plasma and water jet on the roughness of a cutting edge and microhardness of material S 355 J2 G3.


Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122320
Author(s):  
C.N. Kowthaman ◽  
P. Senthil Kumar ◽  
V. Arul Mozhi Selvan ◽  
D. Ganesh

Sign in / Sign up

Export Citation Format

Share Document