Impact of Cutting Parameters on Cutting Force of AISI 410 and AISI 420 MSS during CNC Dry Milling

2022 ◽  
Vol 1048 ◽  
pp. 291-297
Author(s):  
George Pramod ◽  
D. Philip Selvaraj ◽  
George Pradeep

A CNC dry milling experiment was conducted for the machining parameter optimization of two grades of Martensitic Stainless steel (MSS). Optimization is done by employing Taguchi method (S/N ratio and ANOVA). The specimens used are MSS grades 410 and 420.The experiments were designed by employing L9 orthogonal array for 3 levels of feed and spindle speeds. The impact of these parameters on cutting force was analyzed. The analysis reveals that spindle speed constitute the maximum impact on cutting force for both MSS grades. Optimum cutting parameters are obtained at 30 mm/min (feed rate) and 1500 rpm (spindle speed). Due to higher Chromium and Carbon content in AISI 420 MSS resulted higher cutting force values compared with AISI 410 MSS. Optimum values of cutting parameters are estimated for improving productivity and quality. The predicted values at optimal conditions are estimated. The results indicate a good conformity with the outcome of experiment.

2013 ◽  
Vol 845 ◽  
pp. 765-769 ◽  
Author(s):  
Guilherme Cortelini Rosa ◽  
André J. Souza ◽  
Flávio J. Lorini

Machining performance consists to associate the optimal process and cutting parameters and maximum material removal rate with the most appropriate tool while controlling the machined surface state. This work verifies the influence of standard and wiper cutting tools on generated surface roughness and residual stress in dry finish turning operation of the martensitic stainless steel AISI 420 in a comparative way. Tests are conducted for different combinations of tool nose geometry, feed rate and depth of cut being analyzed through the Design of Experiments regarding to surface roughness parametersRaandRt. Moreover, the formation of residual stresses in the material (using the technique of X-Ray Diffraction) was evaluated after the machining process for these two cutting geometries and thereafter the result was compared between them. An ANOVA is performed to clarify the influence of cutting parameters on generated surface roughness, which outputs inform that cutting tool geometry is the most influent onRaandRt. It is concluded that analyzed wiper inserts present low performance for low feed rates. Regarding the analysis of the residual stresses it can be stated that for standard and wiper tools the values collected show that for finish turning the compression stresses were found. It can be observed that the greatest amount of compressive stress has been found for the standard tool.


2010 ◽  
Vol 108-111 ◽  
pp. 1086-1091
Author(s):  
Li Bing Liu ◽  
Xi Wang ◽  
Wei Wu Zhong ◽  
Hui Yu ◽  
Dong Ting Liao ◽  
...  

This paper aims to collect the acoustic emission (AE), the vibration and the temperature signals produced in the hard dry milling of the die steel by using a signal collecting system based on multi-sensor and virtual instrument. Then the signals are processed by the wavelet transform and the wavelet packet transform. So we could pick up some regular pattern which could reflect the characteristic of the machining process from the results. The cutting parameters are set with single factor method and the experiment primarily focuses on researching the effect of changing the cutting parameters on the three signals mentioned forward. Through the experiment, some conclusions could be drawn as follow. In the process of the die steel’s hard dry milling, the spindle speed has a great effect on the AE signals. The temperature is mainly involved with the spindle speed and the depth of cut. The vibration signals have any clear pattern when the cutting parameter changes, but the energy of the vibration signals concentrate mostly on the first frequency band. Furthermore, the process of the hard milling is more stable.


2014 ◽  
Vol 800-801 ◽  
pp. 97-101
Author(s):  
Yao Nan Cheng ◽  
Yue Zhang ◽  
Dian Ge Zuo ◽  
Xin Min Feng

Blisks are important components of aircraft engines. Its machining plays an important role in a aerospace industry. Blisk processing efficiency has become a hot topic in the field of machining. Disk milling is a new processing method to achieve efficiency. In order to optimize disk milling process parameters of blisk, the use of full-factor experimental for researching TC4 titanium disc milling process. Analyze the impact of different cutting parameters on cutting force, the results show: during milling titanium by Discal Cutter, with the increasing of feed per tooth, the cutting force increases. But cutting forces in three directions has the different influence. Feed per tooth corresponding with radial cutting depth. In order to guarantee the material removal rate, it can be selected smaller feed per tooth and larger radial cutting depth. Through the stress simulation analysis on the blade, it can be carried out that the maximum strain of blade is concentrated at the tip arc. The equivalent stress is mainly concentrated at the main cutting edge and the tip arc. It can provide the basis for future tool design.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1526
Author(s):  
Cheng-Hsien Kuo ◽  
Zi-Yi Lin

Most aerospace parts are thin walled and made of aluminum or titanium alloy that is machined to the required shape and dimensions. Deformation is a common issue. Although the reduced cutting forces used in high-speed milling generate low residual stress, the problem of deformation cannot be completely resolved. In this work, we emphasized that choosing the correct cutting parameters and machining techniques could increase the cutting performance and surface quality and reduce the deformation of thin plates. In this study, a part made of a thin 6061 aluminum alloy plate was machined by high-speed milling (HSM), and a Taguchi L16 orthogonal array was used to optimize the following parameters: linear velocity, feed per tooth, cutting depth, cutting width, and toolpath. The impact of cutting parameters on the degree of deformation, surface roughness, as well as the cutting force on the thin plate were all investigated. The results showed that the experimental parameters for the optimal degree of deformation were A1 (linear velocity 450 mm/min), B1 (feed per tooth 0.06 mm/tooth), C1 (cutting depth 0.3 mm), D4 (cutting width 70%), and E4 (rough zigzag). Feed per tooth was the most significant control factor, with a contribution as high as 63.5%. It should also be mentioned that, according to the factor response of deformation, there was a lower value of feed per tooth and less deformation. Furthermore, the feed per tooth and the cutting depth decreased and the surface roughness increased. The cutting force rose or fell with an increase or decrease of cutting depth.


Author(s):  
Akhtar Khan ◽  
Kalipada Maity

The present work explores the application of a novel Multi-Criteria Decision Making (MCDM) based approach known as VIKOR analysis combined with Taguchi technique for simultaneous optimization of some correlated cutting variables in turning of commercially pure titanium grade 2 using uncoated carbide inserts. The experiments have been carried out according to Taguchi’s L27 orthogonal array. Three input variables viz. cutting speed, feed rate and depth of cut have been taken at three different levels. The impact of these cutting variables on cutting force, surface quality and material removal rate has been investigated. The optimal combination of machining parameters has been evaluated to minimize the cutting force and to maximize the surface finish and production rate using MCDM based VIKOR analysis method. ANOVA (analysis of variance) test has been performed to determine the most influencing cutting variable on overall quality measure i.e. VIKOR index (Qi). The optimal setting of machining variables has been shown using main effects plot for S/N ratio for Qi. The results of ANOVA exhibit that the cutting speed is the governing machining parameter followed by feed rate on overall quality index (Qi). The minimum (desirable) value of Qi is achieved at the parametric combination of v3-f1-d3 i.e. cutting speed (110 m/min), feed rate (0.08 mm/rev) and depth of cut (0.4 mm) respectively. The feasibility of the proposed methodology has been verified by conducting a confirmation test.


2019 ◽  
Vol 18 (01) ◽  
pp. 113-132
Author(s):  
Debajyoti Ray ◽  
Asit Baran Puri ◽  
Nagahanumaiah

Precision micro-component fabrication demands suitable manufacturing processes that ensure making of parts with good form and finish. Mechanical micro milling represents a flexible and powerful process that exhibits enhanced capability to create micro features. Bulk metallic glass (BMG) represents a young class of amorphous alloy material with superior mechanical and physical properties and finds appreciable micro scale applications like biomedical devices and implants, micro parts for sport items and various other micro- components. In the present work, an attempt has been made to analyze the influence of the cutting parameters like spindle speed, feed per tooth and axial depth of cut on the machinability of BMG, in mechanical micro-milling process. The micro-milling process performances have been evaluated concerning to cutting forces and surface roughness generated, by making full slots on the workpiece with solid carbide end mill cutters. The paper presents micro-machining results for bulk metallic glass machined with commercial micro-milling tool at low cutting velocity regime. Response surface methodology (RSM) has been employed for process modeling and subsequent analysis to study the influence of the combination of cutting parameters on responses within the selected domain of cutting parameters. It has been found that the effect of axial depth of cut on the cutting force components is remarkably significant. Cutting force components increases with the increase in axial depth of cut and decreases with increase in spindle speed. At low feed rate, cutting force in the feed direction (Fx, i.e., cutting force along x-direction) increases with a decrease in feed rate. This increase of force could be due to the possible ploughing effect. A similar pattern of variation has been observed with cutting force component in cross-feed direction (Fy) also. It has been found that effect of feed per tooth on the roughness parameter Ra is remarkably significant. Surface roughness increases with feed per tooth. Axial depth of cut does not contribute much to the surface roughness. Surface roughness decrease with the increase of spindle speed.


2013 ◽  
Vol 773-774 ◽  
pp. 429-436 ◽  
Author(s):  
Siti Haryani Tomadi ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron ◽  
Abdul Razak Daud

In this paper, the optimization of cutting parameters is investigated to assess surface roughness and cutting force in the end milling of AlSi/AlN metal matrix composite. Eighteen experiments (L18) with five factors (cutting speed, feed rate, depth of cut, volume of particle reinforcement, and type of coated insert) were performed based on Taguchi designs of the experiment method. Two types of coating (TiB2 and TiN/TiCN/TiN) of the carbide cutting tool were employed to machine various volumes of AlN particle (5%, 7% and 10%) reinforced AlSi alloy matrix composite under dry cutting conditions. Signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were applied to investigate the optimum cutting parameters and their significance. The S/N analysis of the obtained results showed that the optimum cutting conditions for the cutting force were; A2 (triple coating of the insert), B2 (cutting speed: 200m/min), C1 (feed rate: 0.6mm/tooth), D1 (axial depth: 0.6mm) and E1 (5% reinforcement). At the mean time, the optimum cutting conditions for surface roughness were; A1 (single coating of insert), B3 (cutting speed: 250m/min), C2 (feed rate: 0.75mm/tooth), D1 (axial depth: 0.6mm) and E1 (5% reinforcement).The study confirmed that, with a minimum number of experiments, the Taguchi method is capable of determining the optimum cutting conditions for the cutting force and surface roughness for this new material under investigation.


2016 ◽  
Vol 693 ◽  
pp. 1114-1120 ◽  
Author(s):  
Fei Peng ◽  
Xian Guo Yan ◽  
Hong Guo ◽  
Li Juan Lu ◽  
Shao Hua Zhang ◽  
...  

Ti-6Al-4V alloy has been tapped with the HSS/Co-M35 by the orthogonal test method. The empirical relationship between the cutting force and four type parameters are given. Also, factors such as hook angle, relief angle, passivation edge radius and main spindle speed collected from the AdvantEdge FEM software are examined by using both statistical analysis and regression analysis. The impact of tapping performance under the multiple type parameters of tap which contain hook angle, relief angle, passivation edge radius and main spindle speed are studied by extreme difference analysis. Three tapping performance indexes which are maximum torque, axial cutting force and cutting temperature have been converted into a single composite indicator yi* by using the comprehensive evaluation method. The optimal process parameters in test are that rake of tap is 11°, relief angle is 12°, and passivation edge radius is 0.015mm, while main spindle speed is 250r/min.


2019 ◽  
Vol 9 (12) ◽  
pp. 2533
Author(s):  
Pingxiang Cao ◽  
Zhaolong Zhu ◽  
Xiaolei Guo ◽  
Xiaodong (Alice) Wang ◽  
Chunchao Fu ◽  
...  

In this paper, the effects of tool geometry and cutting parameters on cutting force and quality were investigated during the tapered milling of glass magnesium (MGO) board with diamond cutters. The results were as follows: firstly, both the cutting force and roughness of the machined surface were positively correlated with the taper angle of the cutters and the cutting depth, but negatively related to the spindle speed. Then, the cutting depth had the largest influence on the cutting force and surface roughness, followed by the taper angle and spindle speed. Thirdly, the taper angle had a significant influence on the cutting force, but not on the surface roughness. The contribution of the spindle speed to both the cutting force and the surface roughness were significant, while the cutting depth had an insignificant effect on the cutting force and the surface roughness. Finally, the optimal cutting condition for the tapered milling of glass magnesium board was found to be a taper angle of 15°, a spindle speed of 5000 rpm (cutting speed of 36.63 m/s), and a cutting depth of 0.5 mm, which are proposed for industrial production in order to achieve greater cutting quality and economic benefit.


2007 ◽  
Vol 10-12 ◽  
pp. 483-487 ◽  
Author(s):  
Hang Zhao ◽  
Jian Guang Li ◽  
Ying Xue Yao ◽  
Chang Qing Liu

Due to cutting parameters playing an important role in machining economics and machining qualities, much attention has been paid to select optimum cutting parameters. In this paper, cutting parameters optimization for constant cutting force was discussed based-on virtual machining comprehensively. Particle swarm optimization (PSO) was used to seek for the optimal spindle speed and feed rate. The framework of virtual machining based cutting parameters optimization was established. Then two controlled experiments were conducted to demonstrate the effectiveness of cutting parameters optimization both with physical cutting and computer simulation. The results of experiments show that machining process with constant cutting force can be achieved via cutting parameters optimization based on virtual machining.


Sign in / Sign up

Export Citation Format

Share Document