Properties of High Temperature Sintered Clay Ceramic Added with Multi-Wire Sawn Granite Waste

2014 ◽  
Vol 775-776 ◽  
pp. 69-74 ◽  
Author(s):  
Monica Castoldi Borlini Gadioli ◽  
Mariane Costalonga de Aguiar ◽  
Carlos Maurício Fontes Vieira ◽  
Verônica Scarpini Candido ◽  
Sérgio Neves Monteiro

Brazil is currently one of the world leading producers and exporters of ornamental stones. The increasing production also generates a proportionally huge amount of wastes. Depending on stones such as granite, these wastes may be composed of relatively high content of alkaline oxides. This is a low melting point flux with advantage for a potential addition of the waste into common clay ceramic. Thus, the present work investigated the addition of a granite waste, generated during the sawing stage using the multi-wire technology, into clayey ceramics fired at 1200oC. This ceramic added with up to 30 wt% waste were evaluated in terms of linear shrinkage, water absorption and flexural strength. It was found that the waste fluxing compounds promoted a reduction in water absorption and increase in strength that are associated with an improved clayey ceramic.

2015 ◽  
Vol 820 ◽  
pp. 449-454
Author(s):  
Alline Sardinha Cordeiro Morais ◽  
Thais Mardegan Louzada ◽  
Veronica Scarpini Candido ◽  
Sergio Neves Monteiro ◽  
Carlos Mauricio Fontes Vieira

The incorporation of industrial wastes into clayey ceramics used in civil construction is becoming a worldwide procedure not only to provide an environmentally correct destination for the waste but, in some cases, to improve the ceramic properties. The objective of the present work was to evaluate the effect of incorporation of a glass powder waste from decontamination process of fluorescent lamps into clayey ceramics. This evaluation was performed based on the technological properties of water absorption, linear shrinkage ad flexural strength. The properties evaluation was complemented by optical microscopy structural observation. The glass waste was incorporated in up to 30 wt% and specimens were uniaxially pressed at 20 MPa and fired at a relatively higher temperature of 1000°C. The results confirmed a substantial improvement of both the water absorption and the strength with glass waste incorporation into clayey ceramics.


2012 ◽  
Vol 727-728 ◽  
pp. 1057-1062 ◽  
Author(s):  
Monica Castoldi Borlini Gadioli ◽  
Mariane Costalonga de Aguiar ◽  
Abiliane de Andrade Pazeto ◽  
Sérgio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

This work has as its objective to evaluate the influence of a granite waste into a clayey ceramic body for obtaining of rustic wall tiles. As raw materials, a clayey ceramic body for red ceramic production and a granite waste, resulting from ornamental stones cutting with the multi-wire technology were used. Compositions using 0, 10, 20 and 30% of waste incorporated into ceramic body were prepared. Specimens were fabricated by uniaxial press-molding at 20 MPa and sintered at 1050°C. The following properties were determined: linear shrinkage, water absorption and flexural rupture strength. In general, within the error bar, there was no influence of the waste in the values of water absorption of the clayey ceramic body. The results showed that all investigated formulations used in this work for the production of rustic wall tiles attend the standards for water absorption and mechanical strength.


Cerâmica ◽  
2010 ◽  
Vol 56 (339) ◽  
pp. 285-290 ◽  
Author(s):  
P. Hettiarachchi ◽  
J. T. S. Motha ◽  
H. M. T. G. A. Pitawala

This study focuses on the identification of an appropriate composition of raw materials for ceramic products from commonly available red clays in Sri Lanka. The raw materials were characterized in terms of particle size distribution, chemical and mineralogical composition. Different formulations of samples were prepared, and the linear shrinkage, water absorption and flexural strength of the final products were measured. Microstructures of fired samples were observed under a scanning electron microscope. The best quality product was obtained when the sample contains a high amount of illite clay in a mixture of 80 wt.% clay-silt and 20 wt.% sand. The presence of higher concentrations of the metal oxides Na2O, K2O and Fe2O3 (total ~21 wt.%) in the clay-silt fraction of samples has resulted in obtaining higher technological properties of the body. The flexural strength and the water absorption of the product are 26.82 MPa and 6.51% respectively. If the raw materials contain lower amounts of the oxides Na2O, K2O and Fe2O3, higher amounts of clay-silt fraction (up to 90 wt.%) must be added to obtain an optimum quality product.


2019 ◽  
Vol 960 ◽  
pp. 207-213
Author(s):  
Li Biao Xiao ◽  
Xiao Qing Hua ◽  
Qun Hu Xue

Addition of different types of calcined bauxites to the ceramic plate formulation was performed to study effects on the firing and properties of the resulting ceramic plates. The physical and chemical characteristics, high-temperature reaction degree, thermochemical behavior, mineral composition, and microstructure of the calcined bauxites were analyzed. The results showed that lightly calcined bauxite could minimize the linear shrinkage rate. However, incomplete high-temperature secondary mullitization reaction could inhibit completion of product sintering and result in a loose microstructure, high water absorption index, and low modulus of rupture. Application of GAL-85 high-temperature calcined bauxite yielded a product with good sintering performance and low water absorption; increased amounts of mullite reinforcement phase also increased the strength of the plate. The degree of secondary mullitization was the main factor affecting the performance of the ceramic plate.


Author(s):  
Wen Zheng ◽  
Jia-Min Wu ◽  
Shuang Chen ◽  
Chang-Shun Wang ◽  
Chun-Lei Liu ◽  
...  

AbstractSilica ceramic cores have played an important part in the manufacture of hollow blades due to their excellent chemical stability and moderate high-temperature mechanical properties. In this study, silica-based ceramics were prepared with Al2O3 addition by stereolithography, and the influence of Al2O3 content on mechanical properties of the silica-based ceramics was investigated. The Al2O3 in silica-based ceramics can improve the mechanical properties by playing a role as a seed for the crystallization of fused silica into cristobalite. As a result, with the increase of Al2O3 content, the linear shrinkage of the silica-based ceramics first decreased and then increased, while the room-temperature flexural strength and the high-temperature flexural strength first increased and then decreased. As the Al2O3 content increased to 1.0 vol%, the linear shrinkage was reduced to 1.64% because of the blocked viscous flow caused by Al2O3. Meanwhile, the room-temperature flexural strength and the high-temperature flexural strength were improved to 20.38 and 21.43 MPa with 1.0 vol% Al2O3, respectively, due to the increased α-cristobalite and β-cristobalite content. Therefore, using the optimal content of Al2O3 in silica-based ceramics can provide excellent mechanical properties, which are suitable for the application of ceramic cores in the manufacturing of hollow blades.


2019 ◽  
Vol 9 (22) ◽  
pp. 4741
Author(s):  
Xuedong Zhang ◽  
Chaozhen Zheng ◽  
Sanping Liu ◽  
Yanbing Zong ◽  
Qifan Zhou ◽  
...  

Steel slag, clay, quartz, feldspar, and talc were mixed to prepare steel slag ceramics. Crystalline phase transitions, microstructures, and the main physical-mechanical properties (water absorption, linear shrinkage, and flexural strength) of steel slag ceramics for various MgO/Al2O3 ratios were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical testing. The results indicated the significant effect of the MgO/Al2O3 ratio on these properties. A decrease in the MgO/Al2O3 ratio resulted in a major crystalline phase transformation from quartz and pyroxene phases to quartz and anorthite phases. High MgO content facilitated production of pyroxene phases. High Al2O3 content favored production of anorthite phases. The water absorption of all the samples (below 0.5%) met the Chinese national standard requirements. Samples with an MgO/Al2O3 ratio of 0.6 exhibited excellent flexural strength, reaching 62.20 MPa. FactSage software was used to predict batch viscosity, which increased with decreasing MgO/Al2O3 ratios.


2020 ◽  
Vol 1012 ◽  
pp. 250-255
Author(s):  
Wendell Bruno Almeida Bezerra ◽  
Fabio da Costa Garcia Filho ◽  
Artur Camposo Pereira ◽  
Sergio Neves Monteiro ◽  
M.T. Marvila ◽  
...  

Residues incorporation into construction building materials is a promising sustainable alternative for the correct disposal of this kind of material. Brazil is one of the largest world producers of ornamental stones. Nevertheless, the disposal of these residues usually is made outside the industry, which contributes to environmental pollution. This work aimed to evaluate the incorporation of residues from the marble industry into ceramic bricks. Specimens of clay ceramic containing 10, 20, 30 and 40 wt.% of marble residue were prepared and fired at 900oC. The evaluation of the ceramic bricks added with marble residue was based on linear shrinkage, water absorption and mechanical resistance. These properties were compared with Brazilian standards. It was concluded that the incorporation of marble residues, with up to 20 wt%, into the ceramic body is technically feasible and positively influences the properties of the material.


Cement is one of the most significant constituents of concrete. Most of the properties of concrete depend on cement. By calcining argillaceous and calcareous material at a high temperature in cement production. During this procedure, huge amount of Co2 is discharged into the air. India is the second biggest manufacturer of cement on the planet. It is assessed that the generation of one tonne of cement brings about discharge of 0.8 tonne of Co2 . The decline in the utilization of cement will lessen the cost of concrete and outpouring of Co2 . Dolomite powder acquired by pulverizing rock forming mineral deposit of dolostone can be utilized as a trade material for cement in concrete up to certain percentage. Dolomite powder has a few comparative attributes of cement. Utilizing dolomite powder in cement can diminish the expense of cement and may expand the solidarity somewhat. Dolomite powder is a pozzolonic material which will improve not only the density but also strengthen the hardness of concrete. This paper inspects the likelihood of utilizing dolomite powder as partial substitution material to cement. The substitution rates attempted were 0 to 25% at a regular interval of 5% by weight of cement. The outcome demonstrates that substituting of cement with dolomite powder improves the compressive, split tensile and flexural strength of concrete.


2014 ◽  
Vol 805 ◽  
pp. 530-535 ◽  
Author(s):  
Michelle Pereira Babisk ◽  
Angélica Pereira Ribeiro ◽  
Sergio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

The state of Rio de Janeiro, southeast of Brazil, has two poles of conventional clay ceramic production, mainly bricks and roofing tiles. In the north region of the state, the county of Campos dos Goytacazes and in the state center, the county of Itaborai, present distinct types of clay. With the aim to improve some characteristics of the Campos dos Goytacazes clay, the objective of this work was to investigate different mixtures with the Itaborai clay. Samples were press-molded with compositions of 0, 25, 50 and 75 wt% of both clays. The samples were fired at 800°C and the technical properties related to plasticity, density, linear shrinkage, water absorption and flexural strength were determined. The results indicated that the superior performance of the Itaborai clay significantly improves that of the Campos dos Goytacazes clay for any incorporated percentage. The mechanisms and reasons for these results are discussed.


2011 ◽  
Vol 266 ◽  
pp. 63-67 ◽  
Author(s):  
Hong Liang Xu ◽  
De Liang Chen ◽  
Hai Long Wang ◽  
Hong Xia Lu ◽  
Rui Zhang ◽  
...  

Coal gangue was used as the main material to fabricate floor tiles in this paper. The mixture of coal gangue, quartz, feldspar and bentonite, with the weight percentage of 55, 20, 20 and 5, was wetly milled, dried, and then pressed into green compacts. The obtained compacts were sintered at 1180-1240 oC and the floor tiles were obtained. The obtained tiles were characterized by XRD, SEM, linear shrinkage, water absorption, bulk density and flexural strength. The results indicate that the tiles were composed of glassy phases, quartz and mullite phases. The phase composition, microstructure, physico-mechanical properties of the samples change with the sintering temperature. The tile sintered at 1220 oC achieves the linear shrinkage, water absorption and bulk density values of 6.18%, 0.16%, 2.45 g/cm3, respectively. Its flexural strength reaches the maximum of 92.0 MPa.


Sign in / Sign up

Export Citation Format

Share Document