Spectral Characteristics of Secondary Radiation Cisplatin for Cancer Therapy

2015 ◽  
Vol 245 ◽  
pp. 253-255
Author(s):  
Ksenya Sergeevna Lukуanenko ◽  
Vladimir Iosifovich Apanasevich ◽  
Aleksandra Viktorovna Lagureva ◽  
Alina Sergeevna Polkovnikova ◽  
Pavel Aleksandrovich Lukyanov ◽  
...  

Gamma spectrums were measured during X-ray transmission through solutions such as sodium chloride solution with increasing quintuple concentration of NaCl and cisplatin with increasing quintuple concentration of platinum. It was shown that the number of photons with an energy of 511 keV is 29.6% more in cisplatin solution with increasing quintuple concentration of platinum (5*cisplatin) than sodium chloride solution increasing quintuple concentration of NaCl. The result allows us to consider cisplatin as a possible radiomodificator for radiation therapy.

2020 ◽  
Vol 21 (3) ◽  
pp. 530-536
Author(s):  
O. V. Sukhova ◽  
V. A. Polonskyy

In this work the structure and corrosion behavior of quasicrystalline cast Al63Cu25Fe12 and Al63Co24Cu13 alloys in 5-% sodium chloride solution (рН 6.9–7.1) were investigated. The alloys were cooled at 5 К/s. The structure of the samples was studied by methods of quantitative metallography, X-ray analysis, and scanning electron microscopy. Corrosion properties were determined by the potentiodynamic method. The made investigations confirm the formation of stable quasicrystalline icosahedral (y) and decagonal (D) phases in the structure of Al63Cu25Fe12 and Al63Co24Cu13 alloys correspondingly. In 5-% sodium chloride solution, the investigated alloys corrode under electrochemical mechanisms with oxygen depolarization. Compared with Al63Cu25Fe12 alloy, Al63Co24Cu13 alloy has a less negative value of free corrosion potential (–0.43 V and–0.66 V, respectively), and its electrochemical passivity region extends due to the inhibition of anodic processes. A corrosion current density, calculated from (E,lgi)-curve, for Al63Co24Cu13 alloy amounts to 0.18 mА/сm2 and for Al63Cu25Fe12 alloy – to 0.20 mА/сm2. The lower corrosion resistance of Al63Cu25Fe12 alloy may be explained by the presence of iron-containing phases in its structure. Based on obtained results, the Al63Co24Cu13 alloy was recommended as a coating material for rocket-and-space equipment working in a marine climate.


CORROSION ◽  
1997 ◽  
Vol 53 (10) ◽  
pp. 808-812 ◽  
Author(s):  
A. Venugopal ◽  
P. Veluchamy ◽  
P. Selvam ◽  
H. Minoura ◽  
V. S. Raja

1965 ◽  
Vol 32 (1) ◽  
pp. 35-44 ◽  
Author(s):  
J. Conochie ◽  
B. J. Sutherland

SummaryMicroscopical and chemical studies of seaminess in Cheddar cheese revealed that the white lines or seams characteristic of the defect are sections through layers of crystals lying between the milled curd particles. The crystals were identified from their X-ray diffraction pattern and by their refractive index as calcium orthophosphate dihydrate, CaHPO4. 2H2O. On each side of the adjoining curd surfaces in affected cheese there is a zone about 20 μm thick of strongly contracted protein which is almost devoid of crystals.Adding sodium chloride to cheddared curd increased the quantities of calcium, phosphorus and water released. The increases were proportional to the amount of salt applied within the range 0–2·5 g NaCl per 100 g curd.The solubility of calcium orthophosphate was found to rise from about 0·0025 M in water to a maximum of 0·008M in 2 M sodium chloride solution.It is postulated that calcium and phosphate ions released from the curd into the seam crystallize in the form of CaHPO4. 2H2O as the solubility of the compound is lowered by diffusion of salt from the surfaces into the curd particles.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Vahid Pourzarghan ◽  
Bahman Fazeli-Nasab

AbstractThe most important inhibitors used in bronze disease are BTA and AMT. While these inhibitors control corrosion, they are toxic and cancerous. In this study, the acacia fruit extract (200 ppm to 1800 ppm) was used to the prevention of corrosion inhibition of bronze alloy in corrosive sodium chloride solution 0.5 M, for 4 weeks consecutively. The Bronze alloy used in this research, was made based on the same percentage as the ancient alloys (Cu-10Sn). IE% was used to obtain the inhibitory efficiency percentage and Rp can be calculated from the resistance of polarization. SEM–EDX was used to evaluate the surfaces of alloy as well as inhibitory. The experiment was conducted in split plot design in time based on the RCD in four replications. ANOVA was performed and comparison of means square using Duncan's multiple range test at one percent probability level. The highest rate of corrosion inhibition (93.5%) was obtained at a concentration of 1800 ppm with an increase in the concentration of the extract, corrosion inhibition also increased, i.e., more bronze was prevented from burning. Also, the highest corrosion inhibitory activity of Acacia extract (79.66) was in the second week and with increasing duration, this effect has decreased. EDX analysis of the control sample matrix showed that the amount of chlorine was 8.47%wt, while in the presence of corrosive sodium chloride solution, after 4 weeks, the amount of chlorine detected was 3.20%wt. According to the morphology (needle and rhombus) of these corrosion products based on the SEM images, it can be said, they are the type of atacamite and paratacamite. They have caused bronze disease in historical bronze works. The green inhibitor of Acacia fruit aqueous extract can play an effective role in inhibiting corrosion of bronze, but at higher concentrations, it became fungal, which can reduce the role of Acacia fruit aqueous extract and even ineffective. To get better performance of green inhibitors, more tests need to be done to improve and optimize.


Sign in / Sign up

Export Citation Format

Share Document