Phase Transformation of M2 High Speed Steel during Semi-Solid Cooling and Conventional Cooling

2022 ◽  
Vol 327 ◽  
pp. 105-110
Author(s):  
Ting Sun ◽  
Yong Jin Wang ◽  
Ren Bo Song ◽  
Ya Zheng Liu ◽  
Jun Yanagimoto ◽  
...  

In this paper, the fundamental microstructure evolution of M2 high speed steel was investigated during semi-solid controlled cooling and conventional cooling, respectively. Semi-solid controlled cooling was conducted at 1260 °C with cooling rates from 0.1 to 10 °C/s, while conventional cooling was conducted at 1200 °C and 890 °C with different cooling rates. The continuous cooling transformation curves were plot according to the microstructure evolution. The results showed that microstructure transformation behavior of cooling structure in semi-solid temperature range was different from that of conventional process. For semi-solid specimen, the solid austenite dissolved more alloy elements, and the austenite stability was increased. The solid matrix was pearlite structure in the samples with cooling rate of 0.1 °C /s. When the cooling rate reached 1 °C/s, the granular pearlite disappeared and martensite lath was formed. The structure was relatively uniform, on which there were large carbide with regular shape. The solidified liquid phase showed a network shape surrounding the solid particles. The size of solid particles showed a decreasing trend with the increase of cooling rates. For conventional cooling process, the large eutectic M6C carbide and the small precipitated MC carbide could not be dissolved by austenitized at 890 °C. Increasing the austenitization temperature helped dissolving part of the carbides. The hardenability of M2 steel was high. The hardness has increased to a high level for both semi-solid and conventional specimens when cooling rate reached 1 °C/s. No obvious increase happened when cooling rate continued increasing.

JOM ◽  
2021 ◽  
Author(s):  
Deli Tian ◽  
Xue Liu ◽  
Liwei Hu ◽  
Fengsheng Qu ◽  
Jinfeng Li ◽  
...  

Alloy Digest ◽  
2010 ◽  
Vol 59 (9) ◽  

Abstract M2 EUR is the European version of the general purpose ASTM M2 high speed steel. This datasheet provides information on composition, physical properties, and elasticity as well as fracture toughness. It also includes information on wear resistance as well as heat treating and machining. Filing Code: TS-691. Producer or source: Latrobe Specialty Steel Company.


Author(s):  
L. E. Afanasieva

The article is devoted to the metallographic analysis of the M2 high-speed steel granules. The study is based on the investigation of the microstructure of the M2 high-speed steel granules obtained by melt atomization. It is demonstrated that granules of similar size can harden both by chemically separating and chemically non-separating mechanism. These last ones have supersaturated solid solution structure of the liquid melt composition, a dispersed dendritic-cellular structure and an increased microhardness HV = 10267±201 MPa.


Author(s):  
Karolien Kempen ◽  
Bey Vrancken ◽  
Sam Buls ◽  
Lore Thijs ◽  
Jan Van Humbeeck ◽  
...  

Cracks and delamination, resulting from residual stresses, are a barrier in the world of additive manufacturing and selective laser melting (SLM) that prohibits the use of many metals in this field. By preheating the baseplate, thermal gradients are lowered and stresses can be reduced. In this work, some initial tests were performed with M2 high speed steel (HSS). The influence of preheating on density and mechanical and physical properties is investigated. The paper shows many promising results for the production of SLM parts in materials that are very sensitive to crack formation and delamination. When using a preheating of 200 °C, crack-free M2 HSS parts were produced with a relative density of 99.8%.


Sign in / Sign up

Export Citation Format

Share Document