Effect of the Mg3N2 Sub-Micron Particle on the Grain Refinement of AZ80 Alloy

2022 ◽  
Vol 327 ◽  
pp. 45-53
Author(s):  
Jiehua Li ◽  
Maria Pammer ◽  
Ernst Neunteufl ◽  
Peter Schumacher

AZ80 alloy has been widely used to produce high performance Mg casting and wrought parts for high-end applications due to its high mechanical properties and deformation ability. However, at least two important issues still need to be solved in order to further improve its mechanical properties and deformation ability. Firstly, the grain size of α-Mg in AZ80 alloy is relatively large (more than 1000 µm) due to a lack of efficient grain refinement methodologies. Secondly, the size of the eutectic Mg17Al12 phase is also large and the distribution of the eutectic Mg17Al12 phase is continuous, which is very harmful for the mechanical properties, in particular to elongation. In this paper, these two important issues are investigated by adding Mg3N2 sub-micron particle into AZ80 alloy and thereby refining the α-Mg and the eutectic Mg17Al12 phase. Firstly, the Mg3N2 sub-micron particle was directly added into AZ80 alloy by using mechanically stirring in the semi-solid state, subsequently the melting temperature was increased above the liquidous temperature, and finally the melting was casted in the liquid state. It was found that the grain size of α-Mg can be refined from 883.8 µm to 169.9 µm. More importantly, the eutectic Mg17Al12 phase was also refined and the distribution became discontinuous. It should be noted that directly adding the Mg3N2 sub-micron particle into AZ80 alloy leads to a great loss of the Mg3N2 sub-micron particle due to the weak wetting behavior between the Mg3N2 sub-micron particle and Mg melt. The second methodology through mixing Mg3N2 sub-micron particles with AZ91 chips using a twin extruder was also used to prepare AZ91 master alloy with 3wt.% Mg3N2 sub-micron particle, which was subsequently added into AZ80 alloy in the liquid state. In this way, a significant grain refinement of α-Mg and a simultaneous refinement of the eutectic Mg17Al12 phase in AZ80 alloy was also achieved. The grain size of α-Mg can be refined from 883.8 µm to 325.9 µm. However, no significant grain refinement by using UST was observed. Instead, the grain size increases from 325.9 µm to 448.6 µm, indicating that the Mg3N2 sub-micron particle may lose its grain refinement potency due to possible aggregation and clustering. This paper provides an efficient and simple methodology for the grain refinement of α-Mg and the simultaneous refinement of the eutectic Mg17Al12 phase in AZ80 alloy.

2013 ◽  
Vol 749 ◽  
pp. 407-413
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Ji Ping Ren ◽  
Min Peng ◽  
Shi Yang ◽  
...  

The mechanical properties and corrosion performances of the ZL101 alloy modified by the composite master alloy were investigated. The results showed that the master alloy had not only obvious effect of grain refinement, but also a significant role in refining dendrite grain of ZL101 alloy. The grain size decreased dramatically from 150μm to 62μm when the addition of composite master alloy is up to 0.5%(mass fraction) and the temperature is 720 for 30 minutes,. Its tensile strength and elongation increased by 27% and 42% respectively. The grain refinement of ZL101 alloy decreased its corrosion performance. The morphology of Si changed into globular from needle modified by NaF, instead of AlTiB.


2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


2014 ◽  
Vol 1004-1005 ◽  
pp. 123-126 ◽  
Author(s):  
Jian Yin ◽  
Xiu Jun Ma ◽  
Jun Ping Yao ◽  
Zhi Jian Zhou

Effect of pulsed magnetic field treatment on the microstructure and mechanical properties of Mg97Y2Zn1 alloy has been investigated. When the pulsed magnetic field is applied on the alloy in semi-solid state, the α-Mg was modified from developed dendrite to fine rosette, resulting in a refined solidification microstructure with the grain size decreased from 4 mm to 0.5 mm. The volume fraction of the second phase ( X phase) increased by about 10 %. The yield strength, fracture strength and plasticity were improved by 21 MPa, 38 MPa and 2.4 %, respectively. The improvement of mechanical properties was attributed to the refined grain size and increased volume fraction of X phase.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 76 ◽  
Author(s):  
Zheng Wang ◽  
Jin-Guo Wang ◽  
Ze-Yu Chen ◽  
Min Zha ◽  
Cheng Wang ◽  
...  

Forming magnesium alloys with rare earth elements (La, Gd, Nd, Y, Ce) is a routine method for modifying their microstructure and properties. In the present work, the effect of Ce addition on the microstructure evolution and the mechanical properties of as-extruded Mg-8Al-0.5Zn (AZ80) alloy was investigated. All of the extruded AZ80-xCe (x = 0, 0.2, 0.8 and 1.4 wt %) alloys exhibited equiaxed grains formed by fully dynamic recrystallization, and the grain size of the extruded AZ80 alloy was remarkably reduced by ~56.7% with the addition of 1.4 wt % Ce. Furthermore, the bulk-shaped Al4Ce phase formed when Ce was first added, with the Ce content rising to 0.8 wt % or higher, and Al4Ce particles in both the nano- and micron sizees were well distributed in the primary α-Mg matrix. The area fraction of the Al4Ce particles expanded with increasing Ce content, providing more nuclei for dynamic recrystallization, which could contribute to the grain refinement. The results of the tensile tests in this study showed that Ce addition effectively improved the room temperature formability of the as-extruded AZ80 alloy, without sacrificing strength. The significantly improved mechanical properties were ascribed to excellent grain refinement, weakened texture strength, an increased Schmid factor, and a reduced area fraction of low-angle grain boundaries, all resulting from Ce addition to the as-extruded AZ80 alloy. The contribution of the nano-Al4Ce precipitates on improving the mechanical properties was also discussed in this paper.


2005 ◽  
Vol 475-479 ◽  
pp. 549-554 ◽  
Author(s):  
H.S. Kim ◽  
Hyo Tae Jeong ◽  
Ha Guk Jeong ◽  
Woo Jin Kim

The softening of fine-grained ECAPed AZ31 Mg alloys could be ascribed to the texture modification during ECAP. Lower ECAP temperature is more effective in refining the microstructure. The strength of the ECAPed AZ 31 Mg alloys increased with decrease in grain size when they have similar texture.


2005 ◽  
Vol 488-489 ◽  
pp. 275-278 ◽  
Author(s):  
Rong Shi Chen ◽  
Jean Jacques Blandin ◽  
Michel Suéry ◽  
En Hou Han

Mechanical properties and microstructure of extruded AZ91(-Ca) alloys have been studied in this paper. The results showed that Ca has no significant effect on reducing grain size of the extruded AZ91 alloy. The ambient temperature tensile tests showed that the ultimate and yield strength of extruded AZ91 alloy decreased by addition of Ca. At elevated temperature, Ca addition improves the yield strength of both AZ91 alloy. The variations in microstructure and mechanical properties of the AZ91 alloy are also discussed in terms of the effects of Ca on grain refinement and formation of constituent phases.


2011 ◽  
Vol 391-392 ◽  
pp. 32-36 ◽  
Author(s):  
Bin Liu ◽  
Jing Huai Zhang ◽  
Zhong Yi Niu ◽  
Jun Qing Li

The as-cast Mg-14Li-3Al-(0-0.9)RE alloys were prepared with vacuum melting method, then processed by hot extrusion. The microstructure and tensile properties were investigated. The results show that both addition of RE and extrusion deformation can refine the grain size. Al3La compounds are formed with addition of La-rich misch metal. The as-extruded Mg-14Li-3Al-0.6RE alloy obtains the finest grain size (4.28 μm) and the highest mechanical properties (σb=222.75 MPa, δ=23.8%), which is related to the grain refinement and the formation of Al3La.


2021 ◽  
Author(s):  
Serkan Öğüt ◽  
Hasan Kaya ◽  
Aykut Kentli ◽  
Mehmet UÇAR

Abstract Equal channel angular pressing (ECAP), expansion equal channel angular pressing (Exp.-ECAP) and hybrid equal channel angular pressing (HECAP) processes were applied to pure copper specimens within this study. Before the ECAP and HECAP processes, an Exp.-ECAP mold with optimum geometric parameters was produced to be used in these processes. The samples, on which ECAP, Exp.-ECAP and HECAP processes were applied, were subjected to microstructure analysis and mechanical tests, and the effects of these processes were examined. The results obtained showed that the Exp.-ECAP process gave better results in grain refinement and mechanical properties, and the Exp.-ECAP passes applied after the ECAP process within the scope of the HECAP process provided a more homogeneous distribution for grain size and hardness.


2019 ◽  
Vol 811 ◽  
pp. 170-178
Author(s):  
Kusharjanto Kusharjanto ◽  
Syoni Soepriyanto ◽  
Akhmad Ardian Korda ◽  
Supono Adi Dwiwanto

Thixoforming process is one method to improve the mechanical properties, especially in the manufacture of magnesium alloy components. This method is an alternative to lightweight structures and simultaneously efficient use of raw materials, fuel efficiency and environmental friendliness. The aim of this study is investigates the effect of ZnO nanoparticles addition on grain refinement of Mg-Al-Zn alloy by thixoforming. In these experiments, ZnO nanoparticles added from 0.1, 0.2, 0.3, 0.4 and 0.5 wt. % to Mg-Al-Zn alloy and thixoforming temperature set-up at 530°C. The results showed that the increasing of weight % ZnO nanoparticles cause decreasing grain size average of Mg-Al-Zn alloy both as-cast and thixoforming. On 0.5 wt. % ZnO addition was obtained grain refinement 39.87 μm (decreased 29.29%) and hardness 73.80 HB (increased 53.94%) compared to as-cast.


2017 ◽  
Vol 753 ◽  
pp. 84-92
Author(s):  
Wei Liu ◽  
Qiu Lin Li ◽  
Wei Liu ◽  
Guo Gang Shu ◽  
Qi Sun ◽  
...  

The paper introduces a new method to produce large sized Al-B4C-Al2O3np composites, which combines ball milling to prepare Al2O3np/Al mixed powder and semi-solid casting to contribute the injection of Al2O3np/Al mixed powder into the melt. The deformation performance of Al2O3np and micro-Al through ball milling with different Al/Al2O3np ratios, different milling time and different balls were studied respectively. It was revealed that micro-Al particles were milled from twisted and crimpled foil pieces to shuttles with Al2O3np embedded on it through 4h milling with 10mm balls. And we consider it as the best bonding between Al2O3np and micro-Al we could attain. And a plate of 25kg of Al-B4C-Al2O3np composite was fabricated successfully with the injection of the Al2O3np/Al mixed powder. Spherical Al2O3np of 300nm and needle-like TiB2 with 200nm in radius and 800nm-4μm in length were found in SEM photographs. Tensile properties of Al-B4C-Al2O3np composites were tested at room temperature and high temperature. It was showed higher mechanical properties than Al-B4C composites at room temperature and elevated temperature. Particularly, a 40% increase of UTS of Al-15wt.% B4C-1wt.%Al2O3np at 350°C was observed.


Sign in / Sign up

Export Citation Format

Share Document