Pushover Analysis of Slip formed Load Bearing Wall Panels

Author(s):  
H. N. P Moragaspitiya ◽  
K. A. S. Susantha
2011 ◽  
Author(s):  
Clay J. Naito ◽  
John M. Hoemann ◽  
Jonathon S. Shull ◽  
Aaron Saucier ◽  
Hani A. Salim ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
pp. 155-173 ◽  
Author(s):  
Joseph M. Nickerson ◽  
Patrick A. Trasborg ◽  
Clay J. Naito ◽  
Charles M. Newberry ◽  
James S. Davidson

2019 ◽  
Vol 289 ◽  
pp. 10012
Author(s):  
Yunxing Shi ◽  
Yangang Zhang ◽  
Kun Ni ◽  
Wei Liu ◽  
Ye Luo

The production process and application of large composite external wall panels (composite panels for short) are introduced in this paper. Composite panels with both load bearing and thermal insulation were formed by pouring normal concrete (NC) and ceramsite foamed concrete (CFC) continuously according to particular technological requirements, which made two layers into a seamless whole. The layers of NC and CFC are for load bearing and thermal insulation respectively. The composite panels were manufactured in the scale of industrial production, and applied to several energy saving prefabricated buildings successively, instead of polystyrene sandwich composite panels (sandwich panel for short) as external wall panels. There are several obvious advantages of the composite panel over the sandwich panel or outer benzoic board. Firstly, it solved the problems of durability of polystyrene and the complex production process of the sandwich pane, the production process of the external wall was thus greatly simplified. In addition, the fire risk was much reduced.


Author(s):  
Michael J. Lowak ◽  
Barry L. Bingham ◽  
Thomas J. Mander ◽  
John R. Montoya

2018 ◽  
Vol 25 (1) ◽  
pp. 173-188 ◽  
Author(s):  
Lu Wang ◽  
Zhimin Wu ◽  
Weiqing Liu ◽  
Li Wan

AbstractAn innovative load-bearing sandwich wall panel with glass fiber-reinforced polymer (GFRP) skins and a foam-GFRP web core (GSFW wall panels, where “GS” denotes GFRP skin and “FW” denotes foam-GFRP web core), which was manufactured using a vacuum-assisted resin infusion process, was developed in this paper. An experimental study involving nine specimens was conducted to validate the effectiveness of this panel for increasing the axial strength under edgewise compression loading. The effects of web thickness, web spacing, web height, and skin thickness on axial stiffness, displacement ductility, and energy dissipation were also investigated. The test results demonstrated that axial strength, axial stiffness, displacement ductility, and energy dissipation could be improved by increasing the web thickness, web height, and skin thickness. An analytical model that considers the confinement effect of foam and the local buckling of GFRP skin was proposed to predict the ultimate axial strength of GSFW panels. A comparison of the analytical and experimental results showed that the analytical model accurately predicted the ultimate axial strength of GSFW wall panels under edgewise compression loading. To simulate the low velocity impact by blindings that are rolled by the wind, an impact test was conducted and the residual axial strength of the wall panels after impact was also investigated.


2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Rohana Mamat ◽  
Siti Hawa Hamzah ◽  
Jamilah Abd. Rahim

Steel Fibre Expanded Polystyrene Concrete (SFEPS) wall panel is envisaged as load bearing walls, although it is lightweight by design. The performance of this wall is investigated, incorporating opening to fulfil the demand for ventilation and services conduits or equipments. It focused on the buckling behaviour by comparing the carrying load capacities and deformation profiles of wall panel with and without opening. Primarily, the samples were cast from concrete mixed with expanded polystyrene (EPS) beads, enhanced with hooked end round shaft steel fibre and reinforced with a single layer rectangular steel fabric (BRC) of size B9. The wall panel size is 2000 mm in height (limited due to testing frame allowable height), 1500 mm wide and 100 mm thick which gives the slenderness ratio of 15. The wall falls under the slender wall category for lightweight concrete since the slenderness ratio is greater than 10 [1]. A central opening with a size of 600 mm high by 600 mm wide is created to accommodate the opening criterion. Experimental tests were conducted simulating fixed ends condition. The average compressive strength of SFEPS, fcu is 20.87 N/mm2 with a density, ρ of 1900 kg/m3. These lightweight SFEPS wall panels sustained load between 958.0 kN and 1938.9 kN. Wall panels experienced maximum displacement of 22.3 mm at midheight. The wall panels failed in buckling as it should be for slender wall. There was also concrete crushing at the upper and lower ends of the panels. The SFEPS wall panel is suitable to be used as load bearing structures.


2014 ◽  
Vol 5 (3) ◽  
pp. 261-290 ◽  
Author(s):  
Poologanathan Keerthan ◽  
Mahen Mahendran

Cold-formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document