Lateral Buckling Mitigation in Deep Waters - A Total Installed Costs Comparison

2021 ◽  
Author(s):  
Hemant Priyadarshi ◽  
Matthew Fudge ◽  
Mark Brunner ◽  
Seban Jose ◽  
Charlie Weakly

Abstract The paper introduces lateral buckling mitigation techniques (sleepers, distributed buoyancy sections, and residual curvature method or RCM) used in deep water fields and provides a total installed cost comparison of these solutions in relative terms. A hypothetical deep-water scenario is used to compare all techniques within the same site environment. Historic benchmarks have been used to make a relative comparison of these buckle mitigation methods on the engineering, procurement, fabrication, and installation fronts. In addition, risks associated with engineering, procurement/fab and installation have been listed to illustrate the risks versus rewards tradeoff. While sleepers and distributed buoyancy have been previously used in deep water, RCM doesn't have a significant track record yet. RCM is a proven and cost-effective buckle mitigation solution in shallow water. This paper compares its application in deep water to the prevailing buckle mitigation methods and confirms if it creates value (savings and reduces risks) for an offshore installation project. It is assumed that each mitigation method is appropriate for the hypothetical deep-water scenario.

Author(s):  
Qiang Bai ◽  
Fengbin Xu ◽  
Mark Brunner

Abstract In recent years the residual curvature (RC) method has been used to provide buckle initiators to control and mitigate the lateral buckling of pipelines for some shallow water projects. With the appropriate planning of the controlled buckles using RC sections, an acceptable design of the pipeline in-place behavior is achieved. However, the RC method has not yet been applied to deep-water pipelines. The twist of RC sections in the sagbend during installation has been observed, and the orientation of as-laid RC section on the seabed is difficult to control in deep-water pipelines. The effects of as-laid RC-section orientation on in-place lateral buckling in deep water are unknown. The FRIC user subroutine in the Abaqus finite-element software suite has been developed for modelling pipe-soil interactions based on uncoupled axial and lateral soil resistances that are assumed to be independent of vertical pipe penetration after initial embedment into the soil surface. However, the penetration of a twisted RC section can vary dramatically from a normal pipeline on the seabed. The UINTER user subroutine in Abaqus was selected for presenting 3D pipe-soil interactions that incorporate the variations of independent axial and lateral soil resistances as a function of pipe penetration more accurately. UINTER is used in the present study to account for the effects of soil penetration on the lateral buckling performance of a pipeline with RC sections in soft clay. The analysis results show that the RC section twists in the sagbend area during installation, and the twist angle reaches its maximum value just prior to the RC section touching the seabed. The in-place lateral buckling analysis is carried out after the installation analysis is finished. The analysis results demonstrate the feasibility of applying the RC method as the primary buckle triggering mechanism for deep water pipelines, and it shows how the RC orientation affects the pipeline in-place performance in terms of strength and fatigue damage (only the stress ranges for use in fatigue calculations are shown in the paper).


Author(s):  
Erwan Karjadi ◽  
Phil Cooper ◽  
Henk Smienk ◽  
Ferry Kortekaas

One way to control lateral buckling in the operation phase for High Pressure High Temperature (HPHT) pipelines is by deliberately introducing residual curvature sections at intervals along the pipeline by adjusting the straightener settings of the pipelay tower, as described in a patent held by Statoil [1]. This method has been applied with reel-lay installation for a number of shallow water pipelines in Europe (Statoil’s Skuld project and Total’s Edradour project). The paper presents the benefits as well as the feasibility of the use of Residual Curvature Method (RCM) to control lateral buckling for deep water applications which involves high top tension in the overbend and high pressure and twist of the RC section in the sagbend. The study cases consider the application of the method for pipelines in 1850m water depth which are pushing the pipe top tension close to the limit of the capacity of the tensioners of Heerema Marine Contractor’s (HMC) Reel-lay vessel the Aegir. There are some challenges of the application of the residual curve method for deep water pipelines. Due to high top tension, some potential issues are investigated during lowering of the curved section from the straightener, passing the tensioners and through the J-lay tower into the water to the seabed. Detailed analyses have been performed to check the interaction of the residual curved pipe section against the tensioners (the effect of the squeeze load on the RC section) and to assess the maximum bending moment generated when the residual curved section is under high top tension below the tensioners against the Load Controlled Condition (LCC) for local buckling bending moment limit. Another consideration is the increase of hydrostatic pressure in deep water which could limit the allowable bending moment in the sagbend when lowering the curved sections to the seabed. Discussions are presented to the feasibility of the concept including the proposed ways of mitigation for the aforementioned potential issues. The paper will also show an improved prediction of pipe twist/roll by comparing a published analytical 2D plane solution against the 3D FEA model prediction. The improved prediction, which considers the out of plane bending component of the pipe catenary, results in an increase of pipe twist in the sagbend section. This reduces the bending moment in the residual curved section when entering the sagbend and increases the probability to roll the curved section over to the horizontal plane on the seabed.


2007 ◽  
Vol 43 (1) ◽  
pp. 3-26 ◽  
Author(s):  
Jean-Pierre Guilbault

ABSTRACT Marine sediments from the late-glacial Champlain Sea have been sampled at 20 localities representing the deeper part of the basin, between Ottawa and the Rivière St-François, Québec. Foraminiferal assemblages have been extracted and a sequence of three deep water and two shallow water ecozones recognized. The lowermost zone (A) is characterized by Cassidulina reniforme, Islandiella helenae and I. norcrossi and represents a paleosalinity of 25 to 30%o. The overlying zone B is dominated by Elphidium excavatum. It represents salinities decreasing from 25 to as low as 10%o. The uppermost zone (C) contains only a sparse assemblage of a morphotype of E. excavatum. If suggests a paleosalinity of no more than 10%o. A mostly unfossiliferous silt and clay layer of variable thickness (post-C) occurs above zone C. It is probably lacustrine. Below zone A and above the Late Wisconsinan till there is a pre-A interval whose variable assemblages represent hyposaline environments east of Montréal, predominantly lacustrine conditions west of Montréal and alternating hyposaline/ lacustrine environments near and south of Montréal. Bottom water temperatures were probably "Arctic" (within a few degrees of 0°) from the pre-A interval up to zone B inclusively. The data from zone C are too poor to estimate temperatures. The shallow water zones indicate environments with high (zone EH) or low (zone EA) salinities but of shallower depths than the deep water zones. The existence of two sequences is interpreted as the result of (probably seasonal) water stratification. The data does not allow to determine the depth of the limit between the shallow and deep waters.


2021 ◽  
Author(s):  
Yann Le Maout ◽  
Michele Ceruli

Abstract The design process of lateral buckling has gained in maturity over the last ten years. However the design of any required engineered trigger to control the formation of lateral buckles remains open to a wide range of design concepts (like sleeper, buoyancy modules, snake lay or residual curvature method) with sometimes increasing complexity in either engineering, fabrication or installation. This paper will describe how a lateral deflection initiated by a temporary subsea winch after pipelay can be used as a reliable mitigation with limited impact on the project execution. The interaction between the winch pull and the pipe soil interaction and the consequences on both the post buckle behaviour and reliability design of the mitigation architecture will be presented. The advantages of this technique (decoupling of construction activities between pipelay and lateral buckling mitigation, standard engineering process, no offset from seabed, no additional permanent equipment) and its limitations (stiff pipeline, detailed pipe soil interaction) will be discussed. The operational feedback from several flowlines designed, installed and operated with this winch pull mitigation will be reviewed and the main lessons learnt will be highlighted. It can be concluded that this temporary subsea winch pull is an interesting and cost effective option for lateral buckling initiation of subsea pipelines.


2021 ◽  
pp. 18-27
Author(s):  
Carlos Varela ◽  
Heather D. Bracken-Grissom

The genus Oediceroides Stebbing, 1888 represents a group of 23 species of amphipods that live from shallow coastal areas to abyssal plains. Most of these species have been collected in deep waters from localities in the South Atlantic and Pacific Oceans, and only one species has been found in the Mediterranean Sea. Many oediceroids inhabit waters more than 200 meters deep with only four species confined to shallow waters. This is the first occasion in which a species belonging to the genus Oediceroides is recorded for the Gulf of Mexico. Here, we describe O. improvisus sp. nov., a species of marine deep-water amphipod collected in 925 meters of water. This species has carapace, mouthpart and pereopodal characters that unite it with other members of the genus. It differs from all other species due to unique rostral and pereopod seven characters, all discussed in detail further in this description. To date, only 20 deep-sea (>200 meters) benthic amphipods have been recorded in the Gulf of Mexico, in comparison with more than 200 species of shallow water representatives from the same region. Our study provides evidence that the deep waters of the Gulf of Mexico still hold undescribed biodiversity.


Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


Author(s):  
Elton J. B. Ribeiro ◽  
Zhimin Tan ◽  
Yucheng Hou ◽  
Yanqiu Zhang ◽  
Andre Iwane

Currently the oil and gas industry is focusing on challenging deep water projects, particularly in Campos Basin located coast off Brazil. However, there are a lot of prolific reservoirs located in shallow water, which need to be developed and they are located in area very far from the coast, where there aren’t pipelines facilities to export oil production, in this case is necessary to use a floating production unit able to storage produced oil, such as a FPSO. So, the riser system configuration should be able to absorb FPSO’s dynamic response due to wave load and avoid damage at touch down zone, in this case is recommended to use compliant riser configuration, such as Lazy Wave, Tethered Wave or Lazy S. In addition to, the proposed FPSO for Tubarão Martelo development is a type VLCC (Very Large Crude Carrier) using external turret moored system, which cause large vertical motion at riser connection and it presents large static offset. Also are expected to install 26 risers and umbilicals hanging off on the turret, this large number of risers and umbilicals has driven the main concerns to clashing and clearance requirement since Lazy-S configuration was adopted. In this paper, some numerical model details and recommendations will be presented, which became a feasible challenging risers system in shallow water. For instance, to solve clashing problem it is strictly recommended for modeling MWA (Mid Water Arch) gutter and bend stiffener at top I-tube interface, this recommendation doesn’t matter in deep water, but for shallow water problem is very important. Also is important to use ballast modules in order to solve clashing problems.


Hand Surgery ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 189-192 ◽  
Author(s):  
Anis Dosani ◽  
Sameer K. Khan ◽  
Sheila Gray ◽  
Steve Joseph ◽  
Ian A. Whittaker

This prospective non-randomised two-cohort study compares the use of an absorbable suture (Poliglecrapone [Monocryl]: Group A) and a non-absorbable suture (Polyamide [Ethilon]: Group B) in wound closure after elective carpal tunnel decompression. The primary outcome was scar cosmesis as assessed by the Stonybrook Scar Evaluation Scale (SBSES); the financial cost of wound closure was compared as a secondary outocome. All fifty patients completed follow-up. At six weeks, there was no significant difference in the two groups regarding scar tenderness (p = 0.5), although residual swelling was more evident in the absorbable group (p = 0.2). The mean SBSES score at six weeks was 4.72 in Group A, and 4.8 in Group B (p = 0.3). The unit cost per closed wound of Monocryl was three times than Ethilon (p < 0.05). Ethilon is thus cost-effective without compromising the cosmetic outcome, and we recommend using this as the preferred suture for closure of carpal tunnel wounds.


Sign in / Sign up

Export Citation Format

Share Document