scholarly journals The Effects of Feeding on Hematological and Plasma Biochemical Profiles in Green (Chelonia mydas) and Kemp's Ridley (Lepidochelys kempii) Sea Turtles

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Eric T. Anderson ◽  
Larry J. Minter ◽  
Elsburgh O. Clarke ◽  
Raymond M. Mroch ◽  
Jean F. Beasley ◽  
...  

In mammals, lipemic blood from sampling too soon after an animal feeds can have substantial effects on biochemical values. Plasma biochemical values in reptiles may be affected by species, age, season, and nutritional state. However, fasting status is not routinely considered when sampling reptile blood. In this paper, we evaluated 2-hour postprandial blood collection in two sea turtle species to investigate the effects of feeding on hematological and plasma biochemical values. Feeding had no significant effects on hematological values in either species, nor did it have an effect on plasma biochemistry values in Kemp's ridley sea turtles. In postprandial green turtles, total protein, albumin, ALP, AST, ALT, amylase, and cholesterol increased significantly, and chloride decreased significantly. Although statistically significant changes were observed, the median percent differences between pre- and postprandial values did not exceed 10% for any of these analytes and would not likely alter the clinical interpretation.

1996 ◽  
Vol 74 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Matthew H. Godfrey ◽  
N. Mrosovsky ◽  
R. Barreto

Leatherback (Dermochelys coriacea) and green (Chelonia mydas) sea turtles in Suriname lay eggs over several months of the year. During this nesting season, changes in rainfall produce changes in sand temperature, which in turn influence the sexual differentiation of incubating sea turtle embryos. The overall sex ratio of leatherback and green sea turtle hatchlings produced at Matapica beach in Suriname was investigated. Estimates of the sex ratios of these turtles in 1993 (green turtles 63.8% female, leatherbacks 69.4% female) were roughly 10% more female-biased than those from an earlier study in 1982. For both species, a significant negative relationship was found between monthly rainfall and monthly sex ratios. Using this relationship and data on rainfall in the past, it was possible to estimate overall sex ratios for an additional 12 years. These estimates varied considerably among different years, ranging from 20 to 90% female in the case of green turtles. Nevertheless, males tended to be produced primarily in April and May, while some females were produced in all months. Such seasonal patterns of production of turtles of different sexes have implications for sea turtle conservation programs that involve manipulating or harvesting eggs.


2017 ◽  
Vol 98 (6) ◽  
pp. 1525-1531 ◽  
Author(s):  
Suzana Machado Guimarães ◽  
Davi Castro Tavares ◽  
Cassiano Monteiro-Neto

The five sea turtle species occurring in Brazilian waters are susceptible to threats, including incidental catches by fisheries. Studies on incidental captures in fishing gears are the main focus of several conservation actions due to high sea turtle fishery mortality worldwide. This study provides the first evaluation of incidental sea turtle catches by industrial bottom trawl fisheries operating in Brazilian waters. Four twin-trawler vessels were monitored between July 2010 and December 2011 by captains who voluntarily completed logbooks. Forty-four turtles were captured during the 1996 tows (8313 fishing hours), resulting in a catch of 5.3 ± 0.8 turtles per 1000 h per unit effort. Captured species included the loggerhead turtle (Caretta caretta, 22 individuals), olive ridley turtles (Lepidochelys olivacea, 21 individuals) and one green turtle (Chelonia mydas). Water depth was the only variable that significantly affected sea turtle captures according to Generalized Linear Models. The capture rates reported in this study ranked sixth in relation to other published studies of similar fisheries occurring worldwide. Considering the importance of this region for sea turtles, the increasing evidence of sea turtle mortality and the goals of the National Action Plan for Conservation of Sea Turtles in Brazil, it is essential to identify the main threats towards these animals and propose mitigating solutions to reduce sea turtle mortality induced by fishing activities. This study provides results that may guide future research and goals in meeting sea turtle conservation strategies.


1998 ◽  
Vol 51 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Kenneth J. Lohmann ◽  
Catherine M. F. Lohmann

The lives of sea turtles consist of a continuous series of migrations. As hatchlings, the turtles swim from their natal beaches into the open sea, often taking refuge in circular current systems (gyres) that serve as moving, open-ocean nursery grounds. The juveniles of many populations subsequently take up residence in coastal feeding areas that are located hundreds or thousands of kilometres from the beaches on which the turtles hatched; some juveniles also migrate between summer and winter habitats. As adults, turtles periodically leave their feeding grounds and migrate to breeding and nesting regions, after which many return to their own specific feeding sites. The itinerant lifestyle characteristic of most sea turtle species is thus inextricably linked to an ability to orient and navigate accurately across large expanses of seemingly featureless ocean.In some sea turtle populations, migratory performance reaches extremes. The total distances certain green turtles (Chelonia mydas) and loggerheads (Caretta caretta) traverse over the span of their lifetimes exceed tens of thousands of kilometres, several times the diameter of the turtle's home ocean basin. Adult migrations between feeding and nesting habitats can require continuous swimming for periods of several weeks. In addition, the paths of migrating turtles often lead almost straight across the open ocean and directly to the destination, leaving little doubt that turtles can navigate to distant target sites with remarkable efficiency.


2021 ◽  
Vol 7 ◽  
Author(s):  
Margaret M. Lamont ◽  
Darren Johnson

The neritic environment is rich in resources and as such plays a crucial role as foraging habitat for multi-species marine assemblages, including sea turtles. However, this habitat also experiences a wide array of anthropogenic threats. To prioritize conservation funds, targeting areas that support multi-species assemblages is ideal. This is particularly important in the Gulf of Mexico where restoration actions are currently ongoing following the Deepwater Horizon oil spill. To better understand these areas in the Gulf of Mexico, we characterized two multi-species aggregations of sea turtles captured in different neritic habitats. We described species composition and size classes of turtles, and calculated body condition index for 642 individuals of three species captured from 2011 to 2019: 13.6% loggerheads (Caretta caretta), 44.9% Kemp’s ridleys (Lepidochelys kempii) and 41.4% green turtles (Chelonia mydas). Species composition differed between the two sites with more loggerheads captured in seagrass and a greater proportion of green turtles captured in sand bottom. Turtles in sand bottom were smaller and weighed less than those captured in seagrass. Although small and large turtles were captured at both sites, the proportions differed between sites. Body condition index of green turtles was lower in sand habitat than seagrass habitat; there was no difference for Kemp’s ridleys or loggerheads. In general, smaller green turtles had a higher body condition index than larger green turtles. We have identified another habitat type used by juvenile sea turtle species in the northern Gulf of Mexico. In addition, we highlight the importance of habitat selection by immature turtles recruiting from the oceanic to the neritic environment, particularly for green turtles.


2021 ◽  
Vol 2 ◽  
Author(s):  
Helen Pheasey ◽  
George Glen ◽  
Nicole L. Allison ◽  
Luis G. Fonseca ◽  
Didiher Chacón ◽  
...  

Estimates of illegal wildlife trade vary significantly and are often based on incomplete datasets, inferences from CITES permits or customs seizures. As a result, annual global estimates of illegal wildlife trade can vary by several billions of US dollars. Translating these figures into species extraction rates is equally challenging, and estimating illegal take accurately is not achievable for many species. Due to their nesting strategies that allow for census data collection, sea turtles offer an exception. On the Caribbean coast of Costa Rica, three sea turtle species (leatherback, Dermochelys coriacea; green, Chelonia mydas; and hawksbill, Eretmochelys imbricata) are exploited by poachers. Despite the consumption of turtle eggs and meat being illegal, they are consumed as a cultural food source and seasonal treat. Conservation programmes monitor nesting beaches, collect abundance data and record poaching events. Despite the availability of robust long-term datasets, quantifying the rate of poaching has yet to be undertaken. Using data from the globally important nesting beach, Tortuguero, as well as beaches Playa Norte and Pacuare on the Caribbean coast of Costa Rica, we modelled the spatial and temporal distribution of poaching of the three sea turtle species. Here, we present data from 2006 to 2019 on a stretch of coastline covering c.37 km. We identified poaching hotspots that correlated with populated areas. While the poaching hotspots persisted over time, we found poaching is declining at each of our sites. However, we urge caution when interpreting this result as the impact of poaching varies between species. Given their low abundance on these beaches, the poaching pressure on leatherback and hawksbill turtles is far greater than the impact on the abundant green turtles. We attribute the decline in poaching to supply-side conservation interventions in place at these beaches. Finally, we highlight the value of data sharing and collaborations between conservation NGOs.


Author(s):  
John D Zardus

Abstract Barnacles that are obligate epizoites of sea turtles are not parasites in the traditional sense. However, they can impair their hosts in some instances, disqualifying the association as strictly commensal. Characterizing these interactions requires knowing which epibionts pair with which hosts, but records of barnacles from sea turtles are scattered and symbiont/host match-ups remain equivocal. The objective of this study was to collate global records on the occurrence of barnacles with sea turtles and describe each species pair quantitatively. Records reporting barnacles with sea turtles were searched spanning the last 167 years, including grey literature, and findings were enumerated for 30,580 individual turtles to evaluate prevalence. The data were summarized globally as well as subdivided across six geographic regions to assess constancy of the affiliations. Patterns of partnering were visualized by hierarchical clustering analysis of percent occurrence values for each barnacle/turtle pair and the relative selectivity of each symbiont and susceptibility of each host were evaluated. After adjusting for synonymies and taxonomic inaccuracies, the occurrence of 16 nominal species of barnacles were recorded from all seven extant sea turtle species. Mostly, barnacles were not specific to single turtle species, partnering on average with three hosts each. Neither were barnacles entirely host-consistent among regions. Three barnacles were common to all sea turtles except leatherbacks. The most common, widespread, and least selective barnacle was Chelonibia testudinaria, the only symbiont of all turtles. Excluding single-record occurrences, the barnacle Stomatolepas transversa was the only single-host associate of any hard-shell sea turtle (the green sea turtle) and Platylepas coriacea and Stomatolepas dermochelys were exclusive associates of leatherback sea turtles. Green sea turtles were the most vulnerable to epibiosis, hosting 13 barnacle species and Kemp’s ridley sea turtles were the least, hosting three. Geographically, there was an average of nine barnacle species per world region, with diversity highest in the Pacific Ocean (12 species) and lowest in the Mediterranean Sea (six species). It is paradoxical that the flexibility of barnacles for multiple host species contrasts with their overall strict specificity for sea turtles, with each symbiont occupying a virtually unique suite of hosts.


2020 ◽  
Vol 160 (9) ◽  
pp. 531-538
Author(s):  
Caroline R.D. Machado ◽  
Larissa Glugoski ◽  
Camila Domit ◽  
Marcela B. Pucci ◽  
Daphne W. Goldberg ◽  
...  

Sea turtles are considered flagship species for marine biodiversity conservation and are considered to be at varying risk of extinction globally. Cases of hybridism have been reported in sea turtles, but chromosomal analyses are limited to classical karyotype descriptions and a few molecular cytogenetic studies. In order to compare karyotypes and understand evolutive mechanisms related to chromosome dif­ferentiation in this group, <i>Chelonia mydas</i>, <i>Caretta caretta</i>, <i>Eretmochelys imbricata</i>, and <i>Lepidochelys olivacea</i> were cytogenetically characterized in the present study. When the obtained cytogenetic data were compared with the putative ancestral Cryptodira karyotype, the studied species showed the same diploid number (2n) of 56 chromosomes, with some variations in chromosomal morphology (karyotypic formula) and minor changes in longitudinal band locations. In situ localization using a 18S ribosomal DNA probe indicated a homeologous microchromosome pair bearing a 45S ribosomal DNA locus and size heteromorphism in all 4 species. Interstitial telomeric sites were identified in a microchromosome pair in <i>C. mydas</i> and <i>C. caretta</i>. The data showed that interspecific variations occurred in chromosomal sets among the Cheloniidae species, in addition to other Cryptodira karyotypes. These variations generated lineage-specific karyotypic diversification in sea turtles, which will have considerable implications for hybrid recognition and for the study, the biology, ecology, and evolutionary history of regional and global populations. Furthermore, we demonstrated that some chromosome rearrangements occurred in sea turtle species, which is in conflict with the hypothesis of conserved karyotypes in this group.


Author(s):  
Claudia Ceballos Fonseca

Between June and October 2002, six field assistants covered the Colombian Caribbean seashore gathering morphological, biotic and socio-cultural information, by direct observations and interviews with the local communities and authorities. From 1,650 km of Caribbean seashore, 181 beaches (730 km), are visited by one or all sea turtle species to nest or feed in surrounding grounds. Species distribution varied along the different regions of the Colombian Caribbean; however, there was a tendency of some species for specific ecosystems. Green turtles (Chelonia mydas) were most often found in the central Guajira, where sea grasses are most abundant, and hawksbills (E retmochelys imbricata) were most abundant on the coral reefs areas around San Bernardo, Rosario, Fuerte and Tortuguilla islands and the San Andrés cays. Though there was no sea turtle marking or individual counting, data was good enough to establish relative abundance categories as rare, common, and abundant. These categories, along with the also categorized identified threats, allowed me to make regional level recommendations for the conservation of sea turtles in the Caribbean coast of Colombia.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2927
Author(s):  
Kerry L. McNally ◽  
Jennifer L. Bowen ◽  
Jennifer O. Brisson ◽  
Adam Kennedy ◽  
Charles J. Innis

Respiratory disease is a common cause of morbidity and mortality in sea turtles, including the Kemp’s ridley sea turtle (Lepidochelys kempii). Although culture-dependent methods are typically used to characterize microbes associated with pneumonia and to determine treatment, culture-independent methods can provide a deeper understanding of the respiratory microbial communities and lead to a more accurate diagnosis. In this study, we characterized the tracheal lavage microbiome from cold-stunned Kemp’s ridley sea turtles at three time points during rehabilitation (intake, rehabilitation, and convalescence) by analyzing the 16S rRNA gene collected from tracheal lavage samples. We retrospectively developed a radiographic scoring system to grade the severity of lung abnormalities in these turtles and found no differences in diversity or composition of microbial communities based on radiographic score. We also found that the culture isolates from tracheal lavage samples, as well as other previously reported sea turtle pathogens, were present in variable abundance across sequenced samples. In addition to the tracheal microbial community of live turtles, we characterized microbial communities from other segments of the respiratory tract (glottis, trachea, anterior lung, posterior lung) from deceased turtles. We found a high degree of variability within turtles and a high degree of dissimilarity between different segments of the respiratory tract and the tracheal lavage collected from the same turtle. In summary, we found that the pulmonary microbial community associated with pneumonia in sea turtles is complex and does not correlate well with the microbial community as identified by tracheal lavage. These results underscore the limitations of using tracheal lavage for identification of the causative agents of pneumonia in sea turtles.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1964 ◽  
Author(s):  
Annie Page-Karjian ◽  
Maria E. Serrano ◽  
Jeffrey Cartzendafner ◽  
Ashley Morgan ◽  
Branson W. Ritchie ◽  
...  

Fibropapillomatosis is associated with chelonid alphaherpesvirus 5 (ChHV5) and tumor formation in sea turtles. We collected blood samples from 113 green (Chelonia mydas) and 112 loggerhead (Caretta caretta) turtles without fibropapillomatosis, including 46 free-ranging turtles (20 green turtles, 26 loggerheads), captured in Core Sound, North Carolina, and 179 turtles (93 green turtles, 86 loggerheads) in rehabilitative care in North Carolina. Blood samples were analyzed for ChHV5 DNA using quantitative polymerase chain reaction (qPCR), and for antibodies to ChHV5 peptides using an enzyme-linked immunosorbent assay (ELISA). None of the samples from foraging turtles tested positive for ChHV5 by qPCR; ELISA was not used for foraging turtles. Samples from 18/179 (10.1%) rehabilitating turtles tested positive for ChHV5 using qPCR, and 32/56 (57.1%) rehabilitating turtles tested positive for antibodies to ChHV5 using ELISA. Five turtles that tested positive by qPCR or ELISA at admission converted to being undetectable during rehabilitation, and five that initially tested negative converted to being positive. Both sea turtle species were significantly more likely to test positive for ChHV5 using ELISA than with qPCR (p < 0.001). There was no difference in the proportions of green turtles versus loggerheads that tested positive for ChHV5 using qPCR, but loggerheads were significantly more likely than green turtles to test positive for ChHV5 using ELISA. This finding suggests that loggerheads infected with ChHV5 at some point in their life may be more able than green turtles to mount an effective immune response against recrudescent infection, pointing to species-specific genetic differences in the two species’ immune response to ChHV5 infection. This is the first study to analyze antibodies to ChHV5 in loggerhead turtles and represents the most complete dataset on ChHV5 DNA detection in sea turtles encountered in the more northern latitudes of their western Atlantic habitat.


Sign in / Sign up

Export Citation Format

Share Document