scholarly journals The MEG3 lncRNA promotes trophoblastic cell growth and invasiveness in preeclampsia by acting as a sponge for miR-21, which regulates BMPR2 levels

2021 ◽  
Vol 65 (4) ◽  
Author(s):  
Huyi Liu ◽  
Xiangdao Cai ◽  
Jia Liu ◽  
Fengxiang Zhang ◽  
Andong He ◽  
...  

Preeclampsia (PE) is one of the leading causes of maternal morbidity and mortality in pregnant women. This study aimed to investigate the potential impact and regulatory mechanisms of bone morphogenetic protein receptor 2 (BMPR2) on the progression of PE. We obtained placental tissues from pregnant women with PE and normal pregnant women, and the results showed that BMPR2 was expressed at low levels in the tissue from PE women. Genetic knockdown of BMPR2 increased the proliferation and invasion of cultured trophoblast cells, whereas its overexpression reduced these characteristics. Bioinformatics analysis and luciferase reporter gene assays confirmed that BMPR2 is a direct target of miR-21. Overexpression of a miR-21 inhibitor promoted the growth and invasiveness of trophoblast cells, whereas the opposite results were observed for the miR-21 mimic. Furthermore, miR-21 was sponged by the lncRNA MEG3, and shRNA inhibition of MEG3 reduced trophoblast cell growth and invasiveness. miR-21 was upregulated in the tissues from PE women, whereas MEG3 was downregulated, and the two were negatively correlated. Collectively, this study demonstrates that the lncRNA MEG3 acts as a sponge for miR-21, which regulates BMPR2 expression and promotes trophoblast cell proliferation and invasiveness, thereby preventing the development of PE. These findings provide novel insight into a targeted therapy that could be used to treat or prevent the development of PE.

2015 ◽  
Vol 37 (5) ◽  
pp. 1956-1966 ◽  
Author(s):  
Shiping Liu ◽  
Peng Feng

Background/Aims: Increasing evidence has shown that miR-203 plays important role in human cancer progression. However, little is known about the function of miR-203 in osteosarcoma (OS). Methods: The expression of miR-203 in OS tissues and cell lines were examined by qRT-PCR. The biological role of miR-20 in OS cell proliferation was examined in vitro and in vivo. The targets of miR-203 were identified by a luciferase reporter gene assay. Results: miR-203 was down regulated in OS tissues and cell lines; decreased miR-203 was associated with a poor overall survival in OS patients. Restoration of miR-203 expression reduced cell growth in vitro and suppressed tumorigenicity in vivo. In contrast, inhibition of miR-203 stimulated OS cell growth both in vitro and in vivo. In addition, TANK binding kinase 1 (TBK1) was identified as a direct target of miR-203; overexpression of TBK1 partly reversed the suppressive effects of miR-203. Furthermore, TBK1 was found up-regulated and inversely correlated with miR-203 in OS tissues. Conclusion: Taken together, these findings suggest that miR-203 acts as a tumor suppressor via regulation of TBK1 expression in OS progression, and miR-203 may be a promising therapeutic target for OS.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Mingli Suo ◽  
Yanfei Sun ◽  
Hailan Yang ◽  
Jing Ji ◽  
Yinfang He ◽  
...  

Abstract Preeclampsia (PE), a common obstetrical disorder, is characterized by impaired migration and invasion abilities of trophoblastic cells. MicroRNA-183-5p (miR-183) was reported to regulate cell migration and invasion in various types of human cancers; however, its role in the pathogenesis of PE remains elusive. Herein, we investigated the role of miR-183 in HTR-8/SVneo trophoblast cells invasion and migration and explored the underlying mechanism. Our results showed that miR-183 was significantly up-regulated in placental tissues from pregnant women compared with that in normal pregnant women. Overexpression of miR-183 inhibited proliferation, migration and invasion, as well as induced apoptosis in HTR-8/SVneo cells. Otherwise, down-regulation of miR-183 achieved the opposite effects. Bioinformatics prediction and luciferase reporter assay confirmed that matrix metalloproteinase-9 (MMP-9) is a target of miR-183. In addition, MMP-9 expression was significantly down-regulated, and inversely correlated with the miR-183 level in placental tissues from pregnant women with severe PE. Down-regulation of MMP-9 suppressed the trophoblast cell invasion and migration, whereas overexpression of MMP-9 promoted cell invasion and migration in HTR-8/SVneo cells. More importantly, up-regulation of MMP-9 reversed the inhibitory effects of miR-183 on cell invasion and migration in trophoblast cells. Collectively, our findings suggested that miR-183 may play critical roles in the pathogenesis of PE and serve as a potential biomarker for severe PE.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A747-A748
Author(s):  
Cuiping Hu ◽  
Junhao Yan

Abstract The adequate invasion of extravillous trophoblast cells (EVTs) is indispensable for the implantation of embryos and subsequent remodeling of uterine spiral arteries in early human gestation. Bone morphogenetic protein 2 (BMP2), which is abundantly expressed at the maternal-fetal interface, has been shown to promote the human EVT invasion process (1). Integrin switching (i.e., a switch from α6β4 to αvβ3) plays essential roles in cell-extracellular matrix adhesion and has been reported to influence EVT migration and invasion (2). Moreover, integrin β3 has been found to promote the adhesion, invasion, and migration abilities of embryonic trophoblasts (3). However, whether integrin β3 participates in BMP2 signaling and mediates BMP2-increased-human trophoblast invasion remains unknown. The purpose of our study was to explore the effects of BMP2 on integrin αvβ3 expression and the possible mediation role of integrin β3 in BMP2-regulated human trophoblast invasion. We used immortalized human trophoblast cell line (HTR8/SVneo) and primary human extravillous trophoblast cells (EVTs) isolated from first-trimester villi as study models. RT-qPCR and Western blot assay were respectively utilized to detect the messenger RNA and protein levels of intergrin αv and β3. The function of the target protein was studied by siRNA knockdown, and the trophoblast invasion ability was checked by Matrigel-coated transwell invasion assays. Our results demonstrated that the mRNA and protein levels of integrin β3, rather than integrin αv, were up-regulated after BMP2 treatment in HTR8/SVneo and primary EVT cells. Importantly, siRNA-mediated down-regulation of integrin β3 significantly inhibited basal and BMP2-induced HTR8/SVneo cell invasionas measured by transwell invasion assay. In conclusion, we findings support that BMP2 promotes human trophoblast cell invasion by up-regulating integrin β3 expression, benefiting the in-depth understanding of the pro-invasive effect of BMP2 on human trophoblasts during early pregnancy. Reference: (1) Hong-Jin Zhao et al., Cell Death Dis 2018;9:174. (2) Damsky, C.H. et al, Development 1994; 120, 3657-3666. (3) Dong-Mei He et al., Reproduction 2019;157:423-430.


2020 ◽  
Vol 103 (3) ◽  
pp. 572-582 ◽  
Author(s):  
Anthony Estienne ◽  
Peggy Jarrier ◽  
Christophe Staub ◽  
Eric Venturi ◽  
Yves Le Vern ◽  
...  

Abstract In this study, we aimed to determine the origin of the difference, in terms of anti-Müllerian hormone production, existing between the bovine and porcine ovaries. We first confirmed by quantitative real-time-Polymerase-Chain Reaction, ELISA assay and immunohistochemistry that anti-Müllerian hormone mRNA and protein production are very low in porcine ovarian growing follicles compared to bovine ones. We then have transfected porcine and bovine granulosa cells with vectors containing the luciferase gene driven by the porcine or the bovine anti-Müllerian hormone promoter. These transfection experiments showed that the porcine anti-Müllerian hormone promoter is less active and less responsive to bone morphogenetic protein stimulations than the bovine promoter in both porcine and bovine cells. Moreover, bovine but not porcine granulosa cells were responsive to bone morphogenetic protein stimulation after transfection of a plasmidic construction including a strong response element to the bone morphogenetic proteins (12 repetitions of the GCCG sequence) upstream of the luciferase reporter gene. We also showed that SMAD6, an inhibitor of the SMAD1-5-8 pathway, is strongly expressed in porcine compared to the bovine granulosa cells. Overall, these results suggest that the low expression of anti-Müllerian hormone in porcine growing follicles is due to both a lack of activity/sensitivity of the porcine anti-Müllerian hormone promoter, and to the lack of responsiveness of porcine granulosa cells to bone morphogenetic protein signaling, potentially due to an overexpression of SMAD6 compared to bovine granulosa cells. We propose that the low levels of anti-Müllerian hormone in the pig would explain the poly-ovulatory phenotype in this species.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chunxia Zhang ◽  
Li Wang ◽  
Jinfeng Chen ◽  
Fei Song ◽  
Yuzhen Guo

Background. Gestational diabetes mellitus (GDM) seriously affects the health of mothers and infants. The high-glucose-induced inhibition in trophoblast cell viability is an important event in GDM pathogenesis. This study evaluated the expression and clinical significance of miR-136 in GDM patients, and the biological function and related mechanisms of miR-136 in the regulation of trophoblast cell proliferation were explored. Methods. The expression of miR-136 in serum and placenta of GDM patients was measured using quantitative Real-Time PCR. Trophoblast cells were stimulated with high-glucose medium to mimic the pathological changes of GDM, and the effect of miR-136 was examined by CCK-8 assay. A luciferase reporter assay was used to confirm the target gene of miR-136, and the relationship of E2F transcription factor 1 (E2F1) with miR-136 in GDM was further analyzed. Results. miR-136 expression was significantly elevated in GDM serum and tissue samples. By high-glucose treatment, trophoblast cell proliferation was inhibited and miR-136 expression was promoted. The knockdown of miR-136 could promote the proliferation of trophoblast cells exposed to high glucose, whereas the overexpression of miR-136 could suppress it. In addition, E2F1 was identified as a target gene of miR-136, which could mediate the regulatory effect of miR-136 on trophoblast cell proliferation. Conclusion. Collectively, miR-136 expression is increased in both serum and placental tissues in GDM patients, and miR-136 mediates the inhibiting effect of high glucose on trophoblast cell viability by targeting E2F1.


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3774-3782 ◽  
Author(s):  
Kazuhiro Kawamura ◽  
Nanami Kawamura ◽  
Wataru Sato ◽  
Jun Fukuda ◽  
Jin Kumagai ◽  
...  

Successful implantation of the blastocyst and subsequent placental development is essential for reproduction. Expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5, together with their receptor, tyrosine kinase B (TrkB), in trophectoderm cells of blastocyst suggests their potential roles in implantation and placental development. Here we demonstrated that treatment with BDNF promoted blastocyst outgrowth, but not adhesion, in vitro and increased levels of the cell invasion marker matrix metalloproteinase-9 in cultured blastocysts through the phosphatidylinositol 3-kinase pathway. After implantation, BDNF and neurotrophin-4/5 proteins as well as TrkB were expressed in trophoblast cells and placentas during different stages of pregnancy. Both TrkB and its ligands were also expressed in decidual cells. Treatment of cultured trophoblast cells with the TrkB ectodomain, or a Trk receptor inhibitor K252a, suppressed cell growth as reflected by decreased proliferation and increased apoptosis, whereas an inactive plasma membrane nonpermeable K252b was ineffective. Studies using the specific inhibitors also indicated the importance of the phosphatidylinositol 3-kinase/Akt pathway in mediating the action of TrkB ligands. In vivo studies in pregnant mice further demonstrated that treatment with K252a, but not K252b, suppressed placental development accompanied by increases in trophoblast cell apoptosis and decreases in placental labyrinth zone at midgestation. In vivo K252a treatment also decreased fetal weight at late gestational stages. Our findings suggested important autocrine/paracrine roles of the BDNF/TrkB signaling system during implantation, subsequent placental development, and fetal growth by increasing trophoblast cell growth and survival.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Pingping Peng ◽  
Huamei Song ◽  
Chenghong Xie ◽  
Wenfei Zheng ◽  
Huigai Ma ◽  
...  

Abstract Objective This study aims to identify the effect of miR-146a-5p on trophoblast cell invasion as well as the mechanism in preeclampsia (PE). Methods Expression levels of miR-146a-5p and Wnt2 in preeclamptic and normal placentae were quantified. Trophoblast cells (HTR-8) were separately transfected with miR-146a-5p mimic, miR-146a-5p inhibitor, pcDNA3.1-Wnt2 or sh-Wnt2, and then the expression levels of miR-146a-5p, Wnt2, and epithelial-mesenchymal transition (EMT)-related proteins (Vimentin, N-cadherin and E-cadherin) were measured. Moreover, the proliferative, migratory and invasive capacities of trophoblast cells were detected, respectively. Dual luciferase reporter assay determined the binding of miR-146a-5p and Wnt2. Results Compared with normal placental tissues, the placentae from PE patients showed higher miR-146a-5p expression and lower Wnt2 expression. Transfection of miR-146a-5p inhibitor or pcDNA3.1-Wnt2 exerted pro-migratory and pro-invasive effects on HTR-8 cells and encouraged EMT in HTR-8 cells; transfection with miR-146a-5p mimic or sh-Wnt2 weakened the proliferative, migratory and invasive capacities as well as reduced EMT process of HTR-8 cells. Moreover, Wnt2 overexpression could partially counteract the suppressive effects of miR-146a-5p overexpression on the progression and EMT of HTR-8 cells. Conclusion miR-146a-5p mediates trophoblast cell proliferation and invasion through regulating Wnt2 expression.


2021 ◽  
Vol 20 (10) ◽  
pp. 2049-2054
Author(s):  
Yijun Song ◽  
Bo Wang

Purpose: To evaluate the role of miR-16 in ischemic neuronal injury.Methods: An oxygen-glucose deprivation (OGD) model of ischemic neuronal injury was established in human brain cortical neuron HCN-2 cell line via hypoxic treatment. The mRNA or protein expressions of miR-16, AKT3, Bax and Bcl-2 were assessed by quantitative real time-polymerase chain reaction (qRTPCR) or western blot assay. Targetscan online software was applied to predict potential targets of miR-16. Cell proliferation was measured by CCK-8 assay while the relationship between miR-16 and AKT3 was determined by Luciferase reporter assay.Results: MiR-16 was overexpressed after OGD treatment. MiR-16 overexpression significantly promoted the proliferation of cortical neurons and inhibited their apoptosis, while miR-16 inhibition produced an opposite effect. The expression of AKT3 was increased after miR-16 inhibition, but it was decreased when miR-16 was overexpressed. In addition, luciferase reporter gene results showed that miR-16 targeted AKT3. Functional experiments showed that AKT3 overexpression reversed the effect of miR-16 overexpression on ischemic injury.Conclusion: MiR-16 regulates neuronal cell growth and cell apoptosis through AKT3 expression.These results present new potential therapeutic targets for the treatment of cerebral ischemic stroke.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yonggang Zhang ◽  
Hongling Yang ◽  
Yipeng Zhang ◽  
Junzhu Shi ◽  
Ronggui Chen

Abstract Background Preeclampsia is a severe disease in pregnant women, which is primarily managed by early screening and prevention. Circular RNAs (circRNAs) have increasingly been shown to be important biological regulators involved in numerous diseases. Further, increasing evidence has demonstrated that circRNAs can be used as diagnostic biomarkers. This study was conducted to evaluate the potential of circCRAMP1L, previously identified to be downregulated in preeclampsia, as a novel biomarker for predicting the development of preeclampsia. Methods We measured the expression of circCRAMP1L, which is reportedly relevant to trophoblast physiology, in plasma samples from 64 patients with preeclampsia and 64 age-, gestational age-, and body mass index-matched healthy pregnant women by qRT-PCR. MTT proliferation and transwell invasion assays revealed the biological role of circCRAMP1L in preeclampsia pathogenesis. RNA immunoprecipitation and dual-luciferase reporter assays clarified the mechanism underlying the biological function of circCRAMP1L in TEV-1 cells. Results circCRAMP1L circulating levels were significantly lower in patients with preeclampsia (2.66 ± 0.82, △Ct value) than in healthy pregnant women (3.95 ± 0.67, △Ct value, p <  0.001). The area under the receiver operating characteristic curve for circCRAMP1L was 0.813. Univariate and multivariate analyses identified circCRAMP1L as an independent predictor of preeclampsia. Furthermore, when circCRAMP1L was utilised in combination with its target protein macrophage stimulating protein (MSP), the predictive performance increased, with an area under the receiver operating characteristic curve of 0.928 (95% CI 0.882–0.974), 80.0% sensitivity, and 80.0% specificity. The in vitro results indicated that circCRAMP1L regulates cell proliferation, and invasion via MSP and RON proteins. We investigated the molecular mechanisms of these effects. In vitro, relative to the control group, circCRAMP1L overexpression significantly enhanced cell proliferation; furthermore, trophoblast cell invasion increased proportionally with circCRAMP1L expression. RNA immunoprecipitation and luciferase reporter gene illustrated that circCRAMP1L participated in regulation of trophoblast cell by regulating MSP. Conclusion Reduced plasma levels of circCRAMP1L may be associated with an increased risk of preeclampsia, and circCRAMP1L may be a novel biomarker of preeclampsia risk.


Sign in / Sign up

Export Citation Format

Share Document