scholarly journals Cover crops as a weed seed bank management tool: A soil down review

2021 ◽  
Vol 16 (4) ◽  
Author(s):  
Cynthia Sias ◽  
Bethany R. Wolters ◽  
Mark S. Reiter ◽  
Michael L. Flessner

This review explores ways that cover crops alter soil environmental conditions that can be used to decrease seed survival, maintain weed seed dormancy, and reduce germination cues, thus reducing above-ground weed pressures. Cover crops are grown between cash crops in rotation, and their residues persist into subsequent crops, impacting weed seeds both during and after cover crops’ growth. Compared to no cover crop, cover crops may reduce weed seedling recruitment and density via: i) reducing soil temperature and fluctuations thereof; ii) reducing light availability and altering light quality; and iii) trapping nitrogen in the cover crop, thus making it less soil-available to weeds. In addition, cover crops may provide habitat for above- and below-ground fauna, resulting in increased weed seed predation. The allelopathic nature of some cover crops can also suppress weeds. However, not all effects of cover crops discourage weeds, such as potentially increasing soil oxygen. Furthermore, cover crops can reduce soil moisture while actively growing but conserve soil moisture after termination, resulting in time-dependent effects. Similarly, decaying legume cover crops can release nitrogen into the soil, potentially aiding weeds. The multiplicity of cover crop species and mixtures, differing responses between weed species, environmental conditions, and other factors hampers uniform recommendations and complicates management for producers. But, cover crops that are managed to maximize biomass, do not increase soil nitrogen, and are terminated at or after cash crop planting will have the greatest potential to attenuate the weed seed bank. There are still many questions to be answered, such as if targeting management efforts at the weed seed bank level is agronomically worthwhile. Future research on cover crops and weed management should include measurements of soil seed banks, including dormancy status, predation levels, and germination. Highlights - Cover crops alter the weed seed bank environment, influencing survival, dormancy, and germination. - Weed seed germination may be reduced by decreased temperature and fluctuations thereof, light, and soil nitrogen. - Weed seed germination may be increased by greater soil moisture, soil nitrogen, and oxygen. - Management should maximize cover crop biomass, decrease soil nitrogen, and delay termination for the greatest potential. - Future research should include measurements of weed seed banks, including dormancy status, predation, and germination.

Author(s):  
Rugare Joyful Tatenda ◽  
Pieterse Petrus Jacobus ◽  
Mabasa Stanford

The effects of one- and two-year maize-cover crop rotations on weed seed bank density and species composition were evaluated in fields at the University of Zimbabwe (UZ) and the International Maize and Wheat Improvement Center (CIMMYT, Harare) between 2014 and 2017. Nine cover crops were rotated, and maize and weed seed bank analyses were done using the seedling emergence method. Maize was used as the control. The results indicated that weed seed density was not significantly (p > 0.05) affected by cover crop mulch type across the seasons. There was a significant (p < 0.05) decline in weed density in the second maize phase of the rotation in UZ Field A. Bidens pilosa, Galinsoga parviflora, Amaranthus hybridus and Eleusine indica were the dominant weeds. B. pilosa density significantly decreased in the second season in UZ Field A but did not vary significantly among cover crops. Significant changes in weed species richness, evenness, and diversity were observed only in the second phase of the rotation in UZ Field A. The results suggest that maize-cover crop rotations could be effective in reducing seed bank size in the short term but have no short-term effect on weed species community composition.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 387
Author(s):  
Miguel A. Repullo-Ruibérriz de Torres ◽  
Manuel Moreno-García ◽  
Rafaela Ordóñez-Fernández ◽  
Antonio Rodríguez-Lizana ◽  
Belén Cárceles Rodríguez ◽  
...  

Almond (Prunus dulcis Mill. [D.A. Webb]) is the third most widely spread crop in Spain and has traditionally been cultivated in marginal areas and shallow soils under rainfed conditions. However, it recently has been progressively introduced in flat irrigated areas. The implementation of cover crops in the inter-rows of woody crops has been proven as a suitable strategy to reduce the runoff and soil erosion but they also can boost soil quality and health. A field experiment was conducted during two-monitoring seasons to examine the soil nitrogen and carbon sequestration potential of three seeded cover crops [barley (Hordeum vulgare L.), hairy vetch (Vicia villosa Roth), and a mixture of 65% barley and 35% vetch] and a control of spontaneous flora in irrigated almond orchards (SW Spain). Here, we show that barley provided the highest biomass amount, followed by mixture covers, vetch, and the control treatment. Also, vetch covered the soil faster in the growing stage, but its residues were decomposed easier than barley and mixture treatments during the decomposition period after mowing, providing less soil protection when the risk of water erosion with autumn rainfall is high. On the other hand, vetch improved soil nitrate content by over 35% with respect to barley and mixture treatments at 0–20 cm soil depth throughout the studied period. In addition, a greater carbon input to the soil was determined in the barley plot. That is, the mixture and barley cover crops had higher potential for carbon sequestration, augmenting the soil organic carbon by more than 1.0 Mg ha−1 during the study period. Thus, taking into consideration the findings of the present experiment, the establishment of a seeded cover crop would be more advisable than spontaneous flora to mitigate soil erosion, enhancing soil fertility and carbon sequestration in irrigated almond plantations in Mediterranean semi-arid regions.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7650 ◽  
Author(s):  
Xian Gu ◽  
Yu Cen ◽  
Liyue Guo ◽  
Caihong Li ◽  
Han Yuan ◽  
...  

The long-term use of herbicides to remove weeds in fallow croplands can impair soil biodiversity, affect the quality of agricultural products, and threaten human health. Consequently, the identification of methods that can effectively limit the weed seed bank and maintain fallow soil fertility without causing soil pollution for the next planting is a critical task. In this study, four weeding treatments were established based on different degrees of disturbance to the topsoil: natural fallow (N), physical clearance (C), deep tillage (D), and sprayed herbicide (H). The changes in the soil weed seed banks, soil nutrients, and soil microbial biomass were carefully investigated. During the fallow period, the C treatment decreased the annual and biennial weed seed bank by 34% against pretreatment, whereas the H treatment did not effectively reduce the weed seed bank. The D treatment had positive effects on the soil fertility, increasing the available nitrogen 108% over that found in the N soil. In addition, a pre-winter deep tillage interfered with the rhizome propagation of perennial weeds. The total biomass of soil bacterial, fungal, and actinomycete in H treatment was the lowest among the four treatments. The biomass of arbuscular mycorrhizal fungi in the N treatment was respectively 42%, 35%, and 91%, higher than that in the C, D, and H treatments. An ecological weeding strategy was proposed based on our findings, which called for exhausting seed banks, blocking seed transmission, and taking advantage of natural opportunities to prevent weed growth for fallow lands. This study could provide a theoretical basis for weed management in fallow fields and organic farming systems.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Laura Vincent-Caboud ◽  
Léa Vereecke ◽  
Erin Silva ◽  
Joséphine Peigné

Organic farming relies heavily on tillage for weed management, however, intensive soil disturbance can have detrimental impacts on soil quality. Cover crop-based rotational tillage (CCBRT), a practice that reduces the need for tillage and cultivation through the creation of cover crop mulches, has emerged as an alternative weed management practice in organic cropping systems. In this study, CCBRT systems using cereal rye and triticale grain species are evaluated with organic soybean directly seeded into a rolled cover crop. Cover crop biomass, weed biomass, and soybean yields were evaluated to assess the effects of cereal rye and winter triticale cover crops on weed suppression and yields. From 2016 to 2018, trials were conducted at six locations in Wisconsin, USA, and Southern France. While cover crop biomass did not differ among the cereal grain species tested, the use of cereal rye as the cover crop resulted in higher soybean yields (2.7 t ha−1 vs. 2.2 t ha−1) and greater weed suppression, both at soybean emergence (231 vs. 577 kg ha−1 of weed biomass) and just prior to soybean harvest (1178 vs. 1545 kg ha−1). On four out of six sites, cover crop biomass was lower than the reported optimal (<8000 kg ha−1) needed to suppress weeds throughout soybean season. Environmental conditions, in tandem with agronomic decisions (e.g., seeding dates, cultivar, planters, etc.), influenced the ability of the cover crop to suppress weeds regardless of the species used. In a changing climate, future research should focus on establishing flexible decision support tools based on multi-tactic cover crop management to ensure more consistent results with respect to cover crop growth, weed suppression, and crop yields.


1994 ◽  
Vol 72 (2) ◽  
pp. 143-149 ◽  
Author(s):  
M. Komulainen ◽  
M. Vieno ◽  
V. T. Yarmishko ◽  
T. D. Daletskaja ◽  
E. A. Maznaja

Seed germinability of some common dwarf shrubs and seed-bank composition were studied in young pine forests along a pollution gradient from Severonickel smelter in Monchegorsk, northern Russia. Samples for seed germination and seed-bank trials were taken from sites representing different zones of pollution. Generally, germinability of dwarf shrub seeds was not affected by distance from pollution source, except for Empetrum nigrum ssp. hermaphroditium. The average density per site of seedlings that emerged from seed-bank samples varied between 278 and 416 seedlings/m2. Empetrum nigrum ssp. hermaphroditum and Betula sp. dominated in seed banks. Calluna vulgaris was also numerous at one site. As a whole, seed-bank taxa were well represented in the above ground vegetation. There were no significant differences in seedling density between sites for dominant taxa. Our results indicate that seeds can retain viability even under a heavy pollution load and thus form a potential for vegetation recovery in polluted sites. Key words: seed germination, seed bank, recovery, pollution, coniferous forest.


2020 ◽  
Vol 13 ◽  
pp. 117862212094806 ◽  
Author(s):  
MJ Marques ◽  
M Ruiz-Colmenero ◽  
R Bienes ◽  
A García-Díaz ◽  
B Sastre

The study of alternative soil managements to tillage, based on the evidence of climate change in the Mediterranean basin, is of great importance. Summer and autumn are critical seasons for soil degradation due to the high-intensity, short-duration storms. Vineyards are vulnerable, especially on steep slopes. The particular effects of storms over the years under different soil conditions due to different management practices are not frequently addressed in the literature. The aim of this study was to examine the differences between runoff and soil moisture patterns influenced by 2 treatments: traditional tillage (Till) and a permanent cover crop. A shallow-rooted grass species Brachypodium distachyon (L.) P. Beauv. with considerable density coverage was selected as cover crop. This annual species was seeded once in the first year and then allowed to self-seed the following years. Tillage was performed at least twice in spring to a 10- to 15-cm depth and once in late autumn at a depth of 20 to 35 cm. Rainfall simulation experiments were performed, 1 year after treatments, using high-intensity rainfall on closed plots of 2 m2, located in the middle strips of the vineyard with different treatments. The effects of simulated rainfall experiments were determined in 3 different moments of the growth cycle of cultivar: (1) in summer with dry soils, (2) in early autumn with moderate soil moisture, and (3) in autumn with wet soils. During the 2-year trial, the soil moisture level in the soil upper layer (0-10 cm) was higher for Till treatment (14.1% ± 2.4%) compared with that for cover crop treatment (12.3% ± 2.0%). However, soil moisture values were more similar between treatments at 35 cm depth (12% ± 1%), with the exception of spring and autumn; in spring, water consumption in the cover crop treatment was the highest, and the moisture level at 35 cm depth was reduced (12%) compared with that for Till treatment (13%). In autumn, in cover crop treatment, higher water infiltration rate in soils led to higher soil moisture content at 35 cm (11%) compared with that of Till treatment (10%). The effects of simulated rainfall experiments on runoff and infiltration under different soil conditions and management practices vary seasonally. Runoff was significantly higher in summer for cover crop treatment (11%) as compared with that for Till management (1%), but significantly lower (3%) with wetter soils than for Till treatment (22%) in autumn. Thus, the simulation experiments with wet soils using cover crops produced higher infiltration rates and, consequently, the higher soil moisture content in the following days. The difference between seasons is attributed to the greater porosity of soil under Till treatment in summer, which resulted from the shallow plowing (10-15 cm depth), carried out to reduce moisture competition between weeds. The effect of traditional spring plowing was short-lived. The infiltration of water increased by cover crop treatment as compared with tillage in autumn both before and after ripping. Management practices did not influence wine parameters, as no significant differences were found between wine organoleptic characteristics in the duo-trio wine tastings, similarly, no differences were found for alcoholic degree, acidity, reduced sugars, and pH; however, a trend for a positive increase in polyphenol contents was noticed. Therefore, properly managed to avoid water shortages, cover crops can be recommended for soil protection in semi-arid environments.


2011 ◽  
Vol 29 (2) ◽  
pp. 343-349 ◽  
Author(s):  
J.M.G. Calado ◽  
G. Basch ◽  
M. Carvalho

The emergence of weed plants depends on environmental conditions, especially temperature and soil moisture. The latter is extremely important in Mediterranean environments which are characterized by irregular amount and distribution of rain throughout the year, which influences the beginning of the growth cycle of the annual species (seed germination). This paper studies the influence of rainfall, in particular accumulated rainfall in autumn, on the emergence of weed plants. The experiment was carried out on Luvisols, and the appearance of flora under field conditions was observed. Through analysis of the results, it can be concluded that a high percentage of weed plants (> 85% related to the highest registered value) was obtained with more than 90 mm of accumulated rainfall from the beginning of September. Thus, in those years in which this amount of rainfall (90 mm) is registered until the end of October, the appearance of potential weed plants can be ensured, under Mediterranean conditions, in a period before sowing the autumn-winter crops.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 533-540 ◽  
Author(s):  
Richard G. Smith ◽  
Randa Jabbour ◽  
Andrew G. Hulting ◽  
Mary E. Barbercheck ◽  
David A. Mortensen

The transition period to certified organic production can present a significant weed management challenge for growers. Organic certification requires that prohibited fertilizers and pesticides must not have been used for 36 mo before harvest of the first organic crop. Understanding how organic management practices and initial weed seed-bank densities affect weed population dynamics during the transition period may improve weed management efficacy and adoption of organic practices. We examined how tillage systems (full or reduced) and cover crop species planted during the first transition year (rye or a mixture of timothy and red clover) affect the seedling densities of three common annual weed species, common lambsquarters, velvetleaf, and foxtail spp., during the 3-yr transition period. Weed seeds were applied in a one-time pulse at the beginning of the study at three densities, low, medium, and high (60, 460, and 2,100 seeds m−2, respectively), and cumulative seedling densities of each species were assessed annually. Treatment factors had variable and species-specific effects on weed seedling densities. In general, the full-tillage system, with an initial cover crop of timothy and red clover, resulted in the lowest density of weed seedlings following seed-bank augmentation. There was little consistent association between the initial densities of applied weed seeds in the weed seed bank at the start of the transition and weed seedling densities at the end of the transition period. This suggests that when multiple crop and weed cultural management practices are employed during the organic transition period, initial failures in weed management may not necessarily lead to persistent and intractable annual weed species management problems following organic certification.


Botany ◽  
2019 ◽  
Vol 97 (11) ◽  
pp. 639-649 ◽  
Author(s):  
Arvind Bhatt ◽  
Narayana R. Bhat ◽  
Flavio Lozano-Isla ◽  
David Gallacher ◽  
Andrea Santo ◽  
...  

Maintaining a viable seed bank throughout the germination season is considered very important for plant recruitment in desert environments, where environmental conditions are unpredictable. Seeds from fully matured Seidlitzia rosmarinus Bunge ex Boiss and Halothamnus iraqensis Botsch. were collected in December 2016, then April, June, and September 2017 from both soil-surface and aerial seed banks. Both of the species were selected mainly by their capacity to rehabilitate saline coastal sites. Germination was analyzed under two photoperiods (0 or 12 h light per day), with winged or dewinged perianths. Seidlitzia rosmarinus had a shorter seasonal range in comparison with H. iraqensis (6 and 9 months, respectively), and the presence of a winged perianth reduced the germination rate of both species. A permanent winged perianth significantly inhibited the germination rate in both species. In the absence of perianth, the germination registered in December 2016 was mostly 100%, but declined to around 20% in September 2017. Seeds are thus more likely to germinate after scarification from wind mobilization, and do not require burial. Our results show that seeds of both the aerial and soil banks are transitory, and viable only during the winter months. Taken together, the combination of aerial and soil seed banks has greatly facilitated germination asynchrony in their environmentally unpredictable desert habitat.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1019-1027 ◽  
Author(s):  
Tiffany A. Bensen ◽  
Richard F. Smith ◽  
Krishna V. Subbarao ◽  
Steven T. Koike ◽  
Steven A. Fennimore ◽  
...  

Mustard cover crops have been suggested as a potential biofumigant for managing soilborne agricultural pests and weeds. We conducted several experiments in commercial lettuce fields in the Salinas Valley, CA, to evaluate the effects of mustard cover crops on lettuce drop caused by Sclerotinia minor and on weed density and seed viability. In a long-term study, we measured the effects of white and Indian mustard cover crops on the density of S. minor sclerotia in soil, lettuce drop incidence, weed densities, weed seed viability, and crop yield in head lettuce. We also tested broccoli and rye cover crop treatments and a fallow control. Across several short-term studies, we evaluated the density of S. minor sclerotia in soil, lettuce drop incidence, weed densities, and weed seed viability following cover cropping with a mustard species blend. Numbers of sclerotia in soil were low in most experimental locations and were not affected by cover cropping. Mustard cover crops did not reduce disease incidence in the long-term experiment but the incidence of lettuce drop was lower in mustard-cover-cropped plots across the short-term experiments. With the exception of common purslane and hairy nightshade, weed densities and weed seed viability were not significantly reduced by cover cropping with mustard. Head lettuce yield was significantly higher in mustard-cover-cropped plots compared with a fallow control. Glucosinolate content in the two mustard species was similar to those measured in other studies but, when converted to an equivalent of a commercial fumigant, the concentrations were much lower than the labeled rate for lettuce production. Although mustard cover cropping resulted in yield benefits in this study, there was little to no disease or weed suppression.


Sign in / Sign up

Export Citation Format

Share Document