scholarly journals Constitutive expression of the barley dehydrin gene aba2 enhances Arabidopsis germination in response to salt stress

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Cristina Calestani ◽  
Meena S. Moses ◽  
Elena Maestri ◽  
Nelson Marmiroli ◽  
Elizabeth A. Bray

Dehydrins (DHNs) are a sub-family of the late embryogenesis abundant proteins generally induced during development of desiccation tolerance in seeds and water deficit or salinity stress in plants. Nevertheless, a detailed understanding of the DHNs function is still lacking. In this work we investigated the possible protective role during salt stress of a <em>Dhn</em> from <em>Hordeum vulgare</em> (L.), <em>aba2</em>. The coding sequence of the <em>aba2</em> gene was constitutively expressed in transgenic lines of <em>Arabidopsis thaliana</em> (L.). During salt stress conditions germination rate, cotyledon expansion and greening were greatly improved in the transgenic lines as compared to the wild type. Between 98 and 100% of the transgenic seeds germinated after two weeks in media containing up to 250 mM NaCl, and 90% after 22 days at 300 mM NaCl. In conditions of 200 mM NaCl 93% of the transgenic cotyledons had greened after two weeks, outperforming the wild type by 45%. Our study provides further evidence that DHNs have an important role in salt stress tolerance. The production of plants constitutively expressing DHNs could be an effective strategy to improve plant breeding programs.

2018 ◽  
Vol 19 (12) ◽  
pp. 3936 ◽  
Author(s):  
Chuthamas Boonchai ◽  
Thanikarn Udomchalothorn ◽  
Siriporn Sripinyowanich ◽  
Luca Comai ◽  
Teerapong Buaboocha ◽  
...  

Rice nucleolin (OsNUC1), consisting of two isoforms, OsNUC1-L and OsNUC1-S, is a multifunctional protein involved in salt-stress tolerance. Here, OsNUC1-S’s function was investigated using transgenic rice lines overexpressing OsNUC1-S. Under non-stress conditions, the transgenic lines showed a lower yield, but higher net photosynthesis rates, stomatal conductance, and transpiration rates than wild type only in the second leaves, while in the flag leaves, these parameters were similar among the lines. However, under salt-stress conditions at the booting stage, the higher yields in transgenic lines were detected. Moreover, the gas exchange parameters of the transgenic lines were higher in both flag and second leaves, suggesting a role for OsNUC1-S overexpression in photosynthesis adaptation under salt-stress conditions. Moreover, the overexpression lines could maintain light-saturation points under salt-stress conditions, while a decrease in the light-saturation point owing to salt stress was found in wild type. Based on a transcriptome comparison between wild type and a transgenic line, after 3 and 9 days of salt stress, the significantly differentially expressed genes were enriched in the metabolic process of nucleic acid and macromolecule, photosynthesis, water transport, and cellular homeostasis processes, leading to the better performance of photosynthetic processes under salt-stress conditions at the booting stage.


2020 ◽  
Vol 21 (17) ◽  
pp. 6250
Author(s):  
Can Si ◽  
Jaime A. Teixeira da Silva ◽  
Chunmei He ◽  
Zhenming Yu ◽  
Conghui Zhao ◽  
...  

The acetylation or deacetylation of polysaccharides can influence their physical properties and biological activities. One main constituent of the edible medicinal orchid, Dendrobium officinale, is water-soluble polysaccharides (WSPs) with substituted O-acetyl groups. Both O-acetyl groups and WSPs show a similar trend in different organs, but the genes coding for enzymes that transfer acetyl groups to WSPs have not been identified. In this study, we report that REDUCED WALL ACETYLATION (RWA) proteins may act as acetyltransferases. Three DoRWA genes were identified, cloned, and sequenced. They were sensitive to abscisic acid (ABA), but there were no differences in germination rate and root length between wild type and 35S::DoRWA3 transgenic lines under ABA stress. Three DoRWA proteins were localized in the endoplasmic reticulum. DoRWA3 had relatively stronger transcript levels in organs where acetyl groups accumulated than DoRWA1 and DoRWA2, was co-expressed with polysaccharides synthetic genes, so it was considered as a candidate acetyltransferase gene. The level of acetylation of polysaccharides increased significantly in the seeds, leaves and stems of three 35S::DoRWA3 transgenic lines compared to wild type plants. These results indicate that DoRWA3 can transfer acetyl groups to polysaccharides and is a candidate protein to improve the biological activity of other edible and medicinal plants.


2018 ◽  
Vol 19 (7) ◽  
pp. 2062 ◽  
Author(s):  
Ling He ◽  
Yin-Huan Wu ◽  
Qian Zhao ◽  
Bei Wang ◽  
Qing-Lin Liu ◽  
...  

WRKY transcription factors (TFs) play a vital part in coping with different stresses. In this study, DgWRKY2 was isolated from Dendranthema grandiflorum. The gene encodes a 325 amino acid protein, belonging to the group II WRKY family, and contains one typical WRKY domain (WRKYGQK) and a zinc finger motif (C-X4-5-C-X22-23-H-X1-H). Overexpression of DgWRKY2 in chrysanthemum enhanced tolerance to high-salt stress compared to the wild type (WT). In addition, the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)), proline content, soluble sugar content, soluble protein content, and chlorophyll content of transgenic chrysanthemum, as well as the survival rate of the transgenic lines, were on average higher than that of the WT. On the contrary, hydrogen peroxide (H2O2), superoxide anion (O2−), and malondialdehyde (MDA) accumulation decreased compared to WT. Expression of the stress-related genes DgCAT, DgAPX, DgZnSOD, DgP5CS, DgDREB1A, and DgDREB2A was increased in the DgWRKY2 transgenic chrysanthemum compared with their expression in the WT. In conclusion, our results indicate that DgWRKY2 confers salt tolerance to transgenic chrysanthemum by enhancing antioxidant and osmotic adjustment. Therefore, this study suggests that DgWRKY2 could be used as a reserve gene for salt-tolerant plant breeding.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaopei Zhang ◽  
Jie Dong ◽  
Fenni Deng ◽  
Wei Wang ◽  
Yingying Cheng ◽  
...  

Abstract Background Long non-coding (lnc) RNAs are a class of functional RNA molecules greater than 200 nucleotides in length, and lncRNAs play important roles in various biological regulatory processes and response to the biotic and abiotic stresses. LncRNAs associated with salt stress in cotton have been identified through RNA sequencing, but the function of lncRNAs has not been reported. We previously identified salt stress-related lncRNAs in cotton (Gossypium spp.), and discovered the salt-related lncRNA-lncRNA973. Results In this study, we identified the expression level, localization, function, and preliminary mechanism of action of lncRNA973. LncRNA973, which was localized in the nucleus, was expressed at a low level under nonstress conditions but can be significantly increased by salt treatments. Here lncRNA973 was transformed into Arabidopsis and overexpressed. Along with the increased expression compared with wild type under salt stress conditions in transgenic plants, the seed germination rate, fresh weights and root lengths of the transgenic plants increased. We also knocked down the expression of lncRNA973 using virus-induced gene silencing technology. The lncRNA973 knockdown plants wilted, and the leaves became yellowed and dropped under salt-stress conditions, indicating that the tolerance to salt stress had decreased compared with wild type. LncRNA973 may be involved in the regulation of reactive oxygen species-scavenging genes, transcription factors and genes involved in salt stress-related processes in response to cotton salt stress. Conclusions LncRNA973 was localized in the nucleus and its expression was increased by salt treatment. The lncRNA973-overexpression lines had increased salt tolerance compared with the wild type, while the lncRNA973 knockdown plants had reduced salt tolerance. LncRNA973 regulated cotton responses to salt stress by modulating the expression of a series of salt stress-related genes. The data provides a basis for further studies on the mechanisms of lncRNA973-associated responses to salt stress in cotton.


2018 ◽  
Vol 51 (3) ◽  
pp. 51-68 ◽  
Author(s):  
M.K. Hasan ◽  
M.S. Islam ◽  
M.R. Islam ◽  
H.N. Ismaan ◽  
A. El Sabagh

Abstract A laboratory experiment regarding germination and seedling growth test was conducted with three black gram genotypes tested under three salinity levels (0, 75 and 150 mM), for 10 days, in sand culture within small plastic pot, to investigate the germination and seedling growth characteristics. Different germination traits of all black gram genotypes, like germination percentage (GP), germination rate (GR), coefficient of velocity of germination (CVG) greatly reduced, as well as mean germination time (MGT) increased with increasing salt stress. At high salt stress, BARI Mash-3 provided the highest GP reduction (28.58%), while the lowest was recorded (15.79% to control) in BARI Mash-1. Salinity have the negative impact on shoot and root lengths, fresh and dry weights. The highest (50.32% to control) and lowest reduction (36.39%) of shoot length were recorded in BARI Mash-2 and BARI Mash-1, respectively, under 150 mM NaCl saline conditions. There were significant reduction of root lengths, root fresh and dry weight, shoot length, shoot fresh and dry weight in all genotypes under saline condition. The genotypes were arranged as BARI Mash-1 > BARI Mash-3 > BARI Mash-2, with respect to salinity tolerance.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Abeer F. Desouky ◽  
Ahmed H. Ahmed ◽  
Hartmut Stützel ◽  
Hans-Jörg Jacobsen ◽  
Yi-Chen Pao ◽  
...  

Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Madhavi Latha Gandla ◽  
Niklas Mähler ◽  
Sacha Escamez ◽  
Tomas Skotare ◽  
Ogonna Obudulu ◽  
...  

Abstract Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen (Populus tremula × tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula × tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.


2020 ◽  
Vol 21 (17) ◽  
pp. 6100
Author(s):  
Yuki Kawakami ◽  
Shahin Imran ◽  
Maki Katsuhara ◽  
Yuichi Tada

We characterized an Na+ transporter SvHKT1;1 from a halophytic turf grass, Sporobolus virginicus. SvHKT1;1 mediated inward and outward Na+ transport in Xenopus laevis oocytes and did not complement K+ transporter-defective mutant yeast. SvHKT1;1 did not complement athkt1;1 mutant Arabidopsis, suggesting its distinguishable function from other typical HKT1 transporters. The transcript was abundant in the shoots compared with the roots in S. virginicus and was upregulated by severe salt stress (500 mM NaCl), but not by lower stress. SvHKT1;1-expressing Arabidopsis lines showed higher shoot Na+ concentrations and lower salt tolerance than wild type (WT) plants under nonstress and salt stress conditions and showed higher Na+ uptake rate in roots at the early stage of salt treatment. These results suggested that constitutive expression of SvHKT1;1 enhanced Na+ uptake in root epidermal cells, followed by increased Na+ transport to shoots, which led to reduced salt tolerance. However, Na+ concentrations in phloem sap of the SvHKT1;1 lines were higher than those in WT plants under salt stress. Based on this result, together with the induction of the SvHKT1;1 transcription under high salinity stress, it was suggested that SvHKT1;1 plays a role in preventing excess shoot Na+ accumulation in S. virginicus.


2000 ◽  
Vol 350 (3) ◽  
pp. 645-653 ◽  
Author(s):  
Caroline A. MACKINTOSH ◽  
David J. FEITH ◽  
Lisa M. SHANTZ ◽  
Anthony E. PEGG

Two lines of transgenic mice were produced with constitutive expression of antizyme-1 in the heart, driven from the cardiac α-myosin heavy chain promoter. The use of engineered antizyme cDNA in which nucleotide 205 had been deleted eliminated the need for polyamine-mediated frameshifting, normally necessary for translation of antizyme mRNA, and thus ensured the constitutive expression of antizyme. Antizyme-1 is thought to be a major factor in regulating cellular polyamine content, acting both to inhibit ornithine decarboxylase (ODC) activity and to target it for degradation, as well as preventing polyamine uptake. The two transgenic lines had substantial, but different, levels of antizyme in the heart, as detected by Western blotting and by the ability of heart extracts to inhibit exogenous purified ODC. Despite the high levels of antizyme, endogenous ODC activity was not completely abolished, with 10– 39% remaining, depending on the transgenic line. Additionally, a relatively small decrease (30–32%) in cardiac spermidine content was observed, with levels of putrescine and spermine unaffected. Interestingly, although the two lines of transgenic mice had different antizyme expression levels, they had almost identical cardiac polyamine content. When treated with a single acute dose of isoprenaline (isoproterenol), cardiac ODC activity and putrescine content were substantially increased (by 14-fold and 4.7-fold respectively) in non-transgenic littermate mice, but these increases were completely prevented in the transgenic mice from both founder lines. Prolonged exposure to isoprenaline also caused increases in cardiac ODC activity and polyamine content, as well as an increase in cardiac growth, in non-transgenic mice. Although the increases in cardiac ODC activity and polyamine content were prevented in the transgenic mice from both founder lines, the increase in cardiac growth was unaffected. These transgenic mice thus provide a valuable model system in which to study the importance of polyamine levels in cardiac growth and electrophysiology in response to stress.


1997 ◽  
Vol 17 (11) ◽  
pp. 6303-6310 ◽  
Author(s):  
L Yu ◽  
M A Gorovsky

Although quantitatively minor replication-independent (replacement) histone variants have been found in a wide variety of organisms, their functions remain unknown. Like the H3.3 replacement variants of vertebrates, hv2, an H3 variant in the ciliated protozoan Tetrahymena thermophila, is synthesized and deposited in nuclei of nongrowing cells. Although hv2 is clearly an H3.3-like replacement variant by its expression, sequence analysis indicates that it evolved independently of the H3.3 variants of multicellular eukaryotes. This suggested that it is the constitutive synthesis, not the particular protein sequence, of these variants that is important in the function of H3 replacement variants. Here, we demonstrate that the gene (HHT3) encoding hv2 or either gene (HHT1 or HHT2) encoding the abundant major H3 can be completely knocked out in Tetrahymena. Surprisingly, when cells lacking hv2 are starved, a major histone H3 mRNA transcribed by the HHT2 gene, which is synthesized little, if at all, in wild-type nongrowing cells, is easily detectable. Both HHT2 and HHT3 knockout strains show no obvious defect during vegetative growth. In addition, a mutant with the double knockout of HHT1 and HHT3 is viable while the HHT2 HHT3 double-knockout mutant is not. These results argue strongly that cells require a constitutively expressed H3 gene but that the particular sequence being expressed is not critical.


Sign in / Sign up

Export Citation Format

Share Document