scholarly journals Accuracy of synovial fluid analysis compared to histology for the identification of calcium pyrophosphate crystals: an ancillary study of the OMERACT US Working Group - CPPD subgroup

Reumatismo ◽  
2021 ◽  
Vol 73 (2) ◽  
pp. 106-110
Author(s):  
S. Sirotti ◽  
M. Gutierrez ◽  
C. Pineda ◽  
D. Clavijo-Cornejo ◽  
T. Serban ◽  
...  

The aim of this study was to evaluate the accuracy of synovial fluid analysis in the identification of calcium pyrophosphate dihydrate crystals compared to microscopic analysis of joint tissues as the reference standard. This is an ancillary study of an international, multicentre cross-sectional study performed by the calcium pyrophosphate deposition disease (CPPD) subgroup of the OMERACT Ultrasound working group. Consecutive patients with knee osteoarthritis (OA) waiting for total knee replacement surgery were enrolled in the study from 2 participating centres in Mexico and Romania. During the surgical procedures, synovial fluid, menisci and hyaline cartilage were collected and analysed within 48 hours from surgery under transmitted light microscopy and compensated polarised light microscopy for the presence/absence of calcium pyrophosphate crystals. All slides were analysed by expert examiners on site, blinded to other findings. A dichotomic score (absence/ presence) was used for scoring both synovial fluid and tissues. Microscopic analysis of knee tissues was considered the gold standard. Sensitivity, specificity, accuracy, positive and negative predictive values of synovial fluid analysis in the identification of calcium pyrophosphate crystals were calculated. 15 patients (53% female, mean age 68 yo ± 8.4) with OA of grade 3 or 4 according to Kellgren-Lawrence scoring were enrolled. 12 patients (80%) were positive for calcium pyrophosphate crystals at the synovial fluid analysis and 14 (93%) at the tissue microscopic analysis. The overall diagnostic accuracy of synovial fluid analysis compared with histology for CPPD was 87%, with a sensitivity of 86% and a specificity of 100%, the positive predictive value was 100% and the negative predictive value was 33%. In conclusion synovial fluid analysis proved to be an accurate test for the identification of calcium pyrophosphate dihydrate crystals in patients with advanced OA.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1348.1-1348
Author(s):  
A. Adinolfi ◽  
S. Sirotti ◽  
M. Gutierrez ◽  
C. Pineda ◽  
D. Clavijo Cornejo ◽  
...  

Background:Synovial fluid analysis (SFA) via compensated polarized light microscopy is still considered the gold standard for the identification and diagnosis of Calcium Pyrophosphate Deposition disease (CPPD)-related arthropathies[1], but very few studies have been published about its diagnostic accuracy.Objectives:The aim of this study was to evaluate the accuracy of SFA in the identification of calcium pyrophosphate dihydrate (CPP) crystals compared to microscopic analysis of joint tissues as the reference standard.Methods:This is an ancillary study of an international, multicentre cross-sectional study performed by the CPPD subgroup of the OMERACT Ultrasound working group[2]. Consecutive patients with knee osteoarthritis (OA) waiting for total knee replacement surgery were enrolled in the study from 2 participating centres, Mexico and Romania. During surgical procedures synovial fluid (SF), menisci and hyaline cartilage were collected and analysed within 48 hours after surgery under transmitted light microscopy and compensated polarised light microscopy for the presence/absence of CPP crystals. All slides were analysed by expert examiners on site, blinded to other findings. A dichotomic score (absence/presence) was used for scoring both SF and tissues. Microscopic analysis of knee tissues was considered the gold standard. Sensitivity, specificity, accuracy, positive and negative predictive values (PPV and NPV) of SFA in the identification of CPP crystals were calculated.Results:15 patients (53% female, mean age 68yo ± 8.4) with OA of grade 3 or 4 according to Kellgren-Lawrence scoring were enrolled. 12 patients (80%) were positive for CPP crystals at SFA and 14 (93%) at tissues microscopic analysis. Among 12 SFA positive patients, all were positive for CPP crystals in either medial or lateral meniscus, and 11 were positive in both; 10 patients were positive at the hyaline cartilage, and all 10 were also positive for at least one meniscus. Regarding the 3 SFA negative patients, only one had no crystals in the examined tissues, while the other 2 patients had CPP crystals in both menisci and hyaline cartilage. The overall diagnostic accuracy of SFA compared to histology analysis for CPPD was 87%, with a sensitivity of 86% and a specificity of 100%, the PPV was 100% and the NPV was 33% (Table 1).Table 1.sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy of synovial fluid analysis compared to the reference standard. CI: Confidential Interval. SF: synovial fluid, in parentheses: numerators and denominators for all percentages provided.SensitivitySpecificityPPVNPVAccuracySF analysis86% (12/14)100% (1/1)100% (12/12)33% (1/3)87% (13/15)(0.65-0.99) CI 95%(0.0-0.25) CI 95%(0.65-0.99) CI 95%(0.0-0.25) CI 95%Conclusion:SFA demonstrated to be an accurate test for the identification of CPP crystals in patients with advanced OA. However, is not always feasible and carries some risks for the patient. Considering the availability of validated imaging techniques for the detection of CPPD, such as US, SFA could be used in those patients where imaging and clinical data are not definitely confirmatory of the disease.References:[1]W. Zhang et al., ‘European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis’, Ann Rheum Dis, vol. 70, no. 4, pp. 563–570, Apr. 2011, doi: 10.1136/ard.2010.139105.[2]G. Filippou et al., ‘Criterion validity of ultrasound in the identification of calcium pyrophosphate crystal deposits at the knee: an OMERACT ultrasound study’, Ann Rheum Dis, p. annrheumdis-2020-217998, Sep. 2020, doi: 10.1136/annrheumdis-2020-217998.Disclosure of Interests:None declared.


2021 ◽  
Vol 48 (1) ◽  
Author(s):  
Mohamed Ismail Abdelkareem ◽  
Abdou Saad Taha Ellabban ◽  
Ahmed Hamed Ismail ◽  
Mohamed Moneer Rayan ◽  
Rasha Ali Abdel-Magied

Abstract Background Calcium pyrophosphate dihydrate deposition disease (CPPD) is the second most common form of the crystal-associated arthritis. Diagnosis is achieved by detection of crystals by polarized light microscopy and/or detection of hyaline cartilage or fibrocartilage calcifications characteristic of CPPD deposition by musculoskeletal ultrasound (MSUS). Axial involvement with intervertebral disc calcification, sacroiliac erosions, and sub-chondral cysts of the facet joints occurs with CPPD deposition. Aim To assess the presence and relation between calcification of intervertebral discs, other articular and periarticular spinal structures, and synovial fluid analysis (SFA) and MSUS calcifications in patients with CPPD deposition disease. Methods One hundred patients with CPPD disease diagnosed according to the modified proposed diagnostic criteria by McCarty 1994 were included. Plain radiography on the spines, pelvis, and affected joints, MSUS on affected joints, and synovial fluid analysis (SFA) were done. Results Spinal calcification was present in 55% of patients. The commonest site was anterior longitudinal ligament (43%). Characteristic CPPD calcifications by plain radiography on the knee and wrist joints were present in 38% and 16% respectively. Characteristic CPPD calcifications by MSUS on the knee and wrist joints presented in 93% and 27% respectively. CPPD crystal detection by SFA was 97%. The accuracy of MSUS to diagnose CPPD deposition disease is more than double that of plain radiography, and it is comparable to that of synovial fluid analysis. The result of intra-rater analysis between SFA by polarized light microscopy and MSUS was kappa 0.767 (p < 0.001); this indicates substantial level of agreement between SFA and MSUS; between plain radiography and MSUS, it was kappa 0.188 (p = 0.32) which indicates slight agreement, and between plain radiography and SFA, it was kappa 0.037 (p = 0.1) which fails to reach a significant level of agreement. There was a significant positive relation between spinal calcification and wrist joint calcification by plain radiography. Conclusion Considerable spinal affection by CPPD deposition disease can be detected. Although the most definitive, reliable direct approach for CPPD deposition disease diagnosis is SFA using polarized light microscopy, MSUS is considered a useful non-invasive diagnostic tool in this situation. In CPPD deposition disease, MSUS has proven to be an excellent technique for detecting calcification in the articular tissue disease compared to conventional radiography.


2021 ◽  
Vol 9 (7) ◽  
pp. e002716
Author(s):  
Sang T. Kim ◽  
Jean Tayar ◽  
Siqing Fu ◽  
Danxia Ke ◽  
Elliot Norry ◽  
...  

With durable cancer responses, genetically modified cell therapies are being implemented in various cancers. However, these immune effector cell therapies can cause toxicities, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Pseudogout arthritis is an inflammatory arthritis induced by deposition of calcium pyrophosphate dihydrate crystals. Here, we report a case of pseudogout arthritis in a patient treated with MAGE-A4 directed T cell receptor T cells, for fallopian tube cancer. The patient developed CRS and ICANS 7 days after infusion of the T cells. Concurrently, the patient newly developed sudden onset of left knee arthritis. Synovial fluid analyses revealed the presence of calcium pyrophosphate dihydrate crystal. Notably, the pseudogout arthritis was resolved with tocilizumab, which was administered for the treatment of CRS and ICANS. Immunoprofiling of the synovial fluid showed that the proportion of inflammatory interleukin 17 (IL-17)-producing CD4+ T (Th17) cells and amount of IL-6 were notably increased, suggesting a potential role of Th17 cells in pseudogout arthritis after T-cell therapy. To the best of our knowledge, this is the first reported case of pseudogout arthritis after cell therapy. Clinicians, especially hematologists, oncologists and rheumatologists, should be aware that pseudogout arthritis can be associated with CRS/ICANS.


Sign in / Sign up

Export Citation Format

Share Document