Long-term effects of crop rotations and fertilization on soil C and N in a thin Black Chernozem in southeastern Saskatchewan

2012 ◽  
Vol 92 (3) ◽  
pp. 449-461 ◽  
Author(s):  
R.L. Lemke ◽  
A.J. Vandenbygaart ◽  
C.A. Campbell ◽  
G.P. Lafond ◽  
B.G. McConkey ◽  
...  

Lemke, R. L., VandenBygaart, A. J., Campbell, C. A., Lafond, G. P., McConkey, B. G. and Grant, B. 2012. Long-term effects of crop rotations and fertilization on soil C and N in a thin Black Chernozem in southeastern Saskatchewan. Can. J. Soil Sci. 92: 449–461. Carbon sequestration in soil is important due to its influence on soil fertility and its impact on the greenhouse gas (GHG) phenomenon. Carbon sequestration is influenced by agronomic factors, but to what extent is still being studied. Long-term agronomic studies provide one of the best means of making such assessments. In this paper we discuss and quantify the effect of cropping frequency, fertilization, legume green manure (LGM) and hay crops in rotations, and tillage on soil organic carbon (SOC) changes in a thin Black Chernozemic fine-textured soil in southeastern Saskatchewan. This was based on a 50-yr (1958–2007) crop rotation experiment which was initiated on land that had previously been in fallow-wheat (Triticum aestivum L.) (F-W), or F-W-W receiving minimum fertilizer for the previous 50 yr. We sampled soil in 1987, 1996 (6 yr after changing from conventional tillage to no-tillage management and increasing N rates markedly) and again in 2007. The SOC (0–15 cm depth) in unfertilized F-W and F-W-W appears not to have changed from the assumed starting level, even after 20 yr of no-till, but SOC in unfertilized continuous wheat (Cont W) increased slightly [not significant (P>0.05)] in 30 yr, but increased more after 20 yr of no-till (but still not significant). No-till plus proper fertilization for 20 yr increased the SOC of F-W, F-W-W and Cont W in direct proportion to cropping frequency. The SOC in the LGM-W-W (unfertilized) system was higher than unfertilized F-W-W in 1987, but 20 yr of no-tillage had no effect, likely because grain yields and C inputs were depressed by inadequate available P. Soil organic carbon in the two aggrading systems [Cont W (N+P) and F-W-W-hay(H)-H-H (unfertilized)] increased significantly (P<0.05) in the first 30 yr; however, a further 20 yr of no-tillage (and increased N in the case of the Cont W) did not increase SOC suggesting that the SOC had reached a steady-state for this soil and management system. The Campbell model effectively simulated SOC changes except for Cont W(N+P), which it overestimated because the model is ineffective in simulating SOC in very fertile systems. After 50 yr, efficiency of conversion of residue C inputs to SOC was negligible for unfertilized F-W and F-W-W, was 3 to 4% for fertilized fallow-containing systems, was about 6 or 7% for Cont W, and about 11% for the unfertilized F-W-W-H-H-H systems.

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1848
Author(s):  
Otávio A. Leal ◽  
Telmo J. C. Amado ◽  
Jackson E. Fiorin ◽  
Cristiano Keller ◽  
Geovane B. Reimche ◽  
...  

Cover crops (CC), particularly legumes, are key to promote soil carbon (C) sequestration in no-tillage. Nevertheless, the mechanisms regulating this process need further elucidation within a broad comprehensive framework. Therefore, we investigated effects of CC quality: black oat (Avena strigosa Schreb) (oat), common vetch (Vicia sativa L.) (vetch), and oat + vetch on carbon dioxide-C (CO2-C) emission (124 days) under conventional- (CT), minimum- (MT) and no-tillage (NT) plots from a long-term experiment in Southern Brazil. Half-life time (t1/2) of CC residues and the apparent C balance (ACB) were obtained for CT and NT. We linked our data to long-term (22 years) soil C and nitrogen (N) stocks and crop yield data of our experimental field. Compared to CT, NT increased t1/2 of oat, oat + vetch and vetch by 3.9-, 3.1- and 3-fold, respectively; reduced CO2-C emissions in oat, oat + vetch and vetch by 500, 600 and 642 kg ha−1, respectively; and increased the ACB (influx) in oat + vetch (195%) and vetch (207%). For vetch, CO2-C emission in MT was 77% greater than NT. Legume CC should be preferentially combined with NT to reduce CO2-C emissions and avoid a flush of N into the soil. The legume based-NT system showed the greatest soil C and N sequestration rates, which were significantly and positively related to soybean (Glycine max (L.) Merrill) and maize (Zea mays L.) yield. Soil C (0–90 cm depth) and N (0–100 cm depth) sequestration increments of 1 kg ha−1 corresponded to soybean yield increments of 1.2 and 7.4 kg ha−1, respectively.


2010 ◽  
Vol 338 (1-2) ◽  
pp. 159-169 ◽  
Author(s):  
Roberta Gentile ◽  
Bernard Vanlauwe ◽  
Pauline Chivenge ◽  
Johan Six

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Eren Taskin ◽  
Roberta Boselli ◽  
Andrea Fiorini ◽  
Chiara Misci ◽  
Federico Ardenti ◽  
...  

Combining no-till and cover crops (NT + CC) as an alternative to conventional tillage (CT) is generating interest to build-up farming systems’ resilience while promoting climate change adaptation in agriculture. Our field study aimed to assess the impact of long-term NT + CC management and short-term water stress on soil microbial communities, enzymatic activities, and the distribution of C and N within soil aggregates. High-throughput sequencing (HTS) revealed the positive impact of NT + CC on microbial biodiversity, especially under water stress conditions, with the presence of important rhizobacteria (e.g., Bradyrhizobium spp.). An alteration index based on soil enzymes confirmed soil depletion under CT. C and N pools within aggregates showed an enrichment under NT + CC mostly due to C and N-rich large macroaggregates (LM), accounting for 44% and 33% of the total soil C and N. Within LM, C and N pools were associated to microaggregates within macroaggregates (mM), which are beneficial for long-term C and N stabilization in soils. Water stress had detrimental effects on aggregate formation and limited C and N inclusion within aggregates. The microbiological and physicochemical parameters correlation supported the hypothesis that long-term NT + CC is a promising alternative to CT, due to the contribution to soil C and N stabilization while enhancing the biodiversity and enzymes.


1998 ◽  
Vol 78 (1) ◽  
pp. 155-162 ◽  
Author(s):  
C. A. Campbell ◽  
F. Selles ◽  
G. P. Lafond ◽  
B. G. McConkey ◽  
D. Hahn

Society is interested in increasing C storage in soil to reduce CO2 concentration in the atmosphere, because the latter may contribute to global warming. Further, there is considerable interest in the use of straw for industrial purposes. Using soil samples taken from the 0- to 7.5-cm and 7.5- to 15-cm depths in May 1987 and September 1996, we determined organic C and total N in five crop rotations (nine treatments) using automated Carlo Erba combustion analyzer. The experiment was managed using conventional mechanical tillage from 1957 to 1989; it was changed to no-tillage management in 1990. Our objective was to determine: (a) if change to no-tillage management had changed soil C and N storage, and (b) if method of calculating organic C and N change would influence interpretation of the results. All three methods of calculation confirmed the efficacy of employing best management practices (e.g., fertilization based on soil tests, reducing summerfallow, including legumes in rotations) for increasing or maintaining soil organic matter, and showed that the latter was directly associated with the amount of crop residues returned to the soil. Where bulk density was significantly different between sampling times, the often used mass per fixed depth (MFD) (i.e., volume basis) calculation can lead to erroneous conclusions. When the recently recommended mass per equal depth (MED) method of calculation was used, it showed that 6 yr of no-tillage did not increase soil organic C or total N. However, in unfertilized systems, where crop yields are gradually decreasing since the change, there is an accompanying decrease in organic matter, while fertilized, or high-fertility systems that include legume hay crops, in which wheat yields have been maintained have tended to maintain the organic matter level over time. When the MFD calculation was used, there was no change in C over time when straw was harvested in the F–W–W system; however, the MED calculation and concentrations tend to show a decrease in soil C and N. This suggests that in time, industrial use of straw may have negative consequences for soil conservation. We concluded that concentrations may be as effective as MED for assessing changes in organic matter, provided "amounts" are not required. Key words: Straw removal, fertilizers, legumes, cropping frequency, C mass calculation


2016 ◽  
Vol 26 (5) ◽  
pp. 1503-1516 ◽  
Author(s):  
Peter W. Ganzlin ◽  
Michael J. Gundale ◽  
Rachel E. Becknell ◽  
Cory C. Cleveland

2021 ◽  
Vol 211 ◽  
pp. 104995
Author(s):  
Giuseppe Badagliacca ◽  
Vito Armando Laudicina ◽  
Gaetano Amato ◽  
Luigi Badalucco ◽  
Alfonso Salvatore Frenda ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1393
Author(s):  
Karin S. Levin ◽  
Karl Auerswald ◽  
Hans Jürgen Reents ◽  
Kurt-Jürgen Hülsbergen

Combining organic farming and biogas production from agricultural feedstocks has been suggested as a way of achieving carbon (C) neutrality in Europe. However, as the long-term effects of C removal for methane production on soil organic carbon (SOC) are unclear, organic farmers in particular have questioned whether farm biogas production will have a positive effect on soil fertility. Eight years of data from an organic long-term field trial involving digestate fertilisation and various crop rotations (CRs) with differing proportions of clover-grass leys were used to calculate C inputs based on the CANDY model, and these modelled changes compared with measured changes in SOC content (SOCc) over the same period. Measured SOCc increased by nearly 20% over the eight years. Digestate fertilisation significantly increased SOCc. Fertilised plots with the highest proportion of clover-grass in the CR had the highest SOCc. The C inputs from clover-grass leys, even if they only made up 25% of the CR, were high enough to increase SOCc, even with the removal of all aboveground biomass and without fertilisation. Our results show that biogas production based on clover-grass leys could be an important part of sustainable farming, improving or maintaining SOCc and improving nutrient flows, particularly in organic farming, while simultaneously providing renewable energy.


2002 ◽  
Vol 139 (3) ◽  
pp. 231-243 ◽  
Author(s):  
A. J. A. VINTEN ◽  
B. C. BALL ◽  
M. F. O'SULLIVAN ◽  
J. K. HENSHALL

The effects of ploughing or no-tillage of long-term grass and grass-clover swards on changes in organic C and N pools and on CO2 and denitrified gas emissions were investigated in a 3-year field experiment in 1996–99 near Penicuik, Scotland. The decrease in soil C content between 1996 and 1999 was 15·3 t/ha (95% confidence limits were 1·7–28·9 t/ha). Field estimates of CO2 losses from deep-ploughed, normal-ploughed and no-tillage plots were 3·1, 4·5 and 4·6 t/ha over the sampling periods (a total of 257 days) in 1996–98. The highest N2O fluxes were from the fertilized spring barley under no-tillage. Thus no-tillage did not reduce C emissions, caused higher N2O emissions, and required larger inputs of N fertilizer than ploughing. By contrast, deep ploughing led to smaller C and N2O emissions but had no effect on yields, suggesting that deep ploughing might be an appropriate means of conserving C and N when leys are ploughed in. Subsoil denitrification losses were estimated to be 10–16 kg N/ha per year by measurement of 15N emissions from incubated intact cores. A balance sheet of N inputs and outputs showed that net N mineralization over 3 years was lower from plots receiving N fertilizer than from plots receiving no fertilizer.


Geoderma ◽  
2014 ◽  
Vol 213 ◽  
pp. 379-384 ◽  
Author(s):  
Enke Liu ◽  
Saba Ghirmai Teclemariam ◽  
Changrong Yan ◽  
Jianmin Yu ◽  
Runsheng Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document