scholarly journals Degrees of Regular Sequences With a Symmetric Group Action

2019 ◽  
Vol 71 (03) ◽  
pp. 557-578
Author(s):  
Federico Galetto ◽  
Anthony Vito Geramita ◽  
David Louis Wehlau

AbstractWe consider ideals in a polynomial ring that are generated by regular sequences of homogeneous polynomials and are stable under the action of the symmetric group permuting the variables. In previous work, we determined the possible isomorphism types for these ideals. Following up on that work, we now analyze the possible degrees of the elements in such regular sequences. For each case of our classification, we provide some criteria guaranteeing the existence of regular sequences in certain degrees.

10.37236/425 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Aba Mbirika

The Springer variety is the set of flags stabilized by a nilpotent operator. In 1976, T.A. Springer observed that this variety's cohomology ring carries a symmetric group action, and he offered a deep geometric construction of this action. Sixteen years later, Garsia and Procesi made Springer's work more transparent and accessible by presenting the cohomology ring as a graded quotient of a polynomial ring. They combinatorially describe an explicit basis for this quotient. The goal of this paper is to generalize their work. Our main result deepens their analysis of Springer varieties and extends it to a family of varieties called Hessenberg varieties, a two-parameter generalization of Springer varieties. Little is known about their cohomology. For the class of regular nilpotent Hessenberg varieties, we conjecture a quotient presentation for the cohomology ring and exhibit an explicit basis. Tantalizing new evidence supports our conjecture for a subclass of regular nilpotent varieties called Peterson varieties.


2000 ◽  
Vol 225 (1-3) ◽  
pp. 15-24 ◽  
Author(s):  
Arkady Berenstein ◽  
Anatol N. Kirillov

Order ◽  
2016 ◽  
Vol 35 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Christos A. Athanasiadis
Keyword(s):  

1999 ◽  
Vol 153 ◽  
pp. 141-153 ◽  
Author(s):  
Jürgen Herzog ◽  
Takayuki Hibi

AbstractA componentwise linear ideal is a graded ideal I of a polynomial ring such that, for each degree q, the ideal generated by all homogeneous polynomials of degree q belonging to I has a linear resolution. Examples of componentwise linear ideals include stable monomial ideals and Gotzmann ideals. The graded Betti numbers of a componentwise linear ideal can be determined by the graded Betti numbers of its components. Combinatorics on squarefree componentwise linear ideals will be especially studied. It turns out that the Stanley-Reisner ideal IΔ arising from a simplicial complex Δ is componentwise linear if and only if the Alexander dual of Δ is sequentially Cohen-Macaulay. This result generalizes the theorem by Eagon and Reiner which says that the Stanley-Reisner ideal of a simplicial complex has a linear resolution if and only if its Alexander dual is Cohen-Macaulay.


10.37236/8935 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Rosa Orellana ◽  
Michael Zabrocki

We consider the symmetric group $S_n$-module of the polynomial ring with $m$ sets of $n$ commuting variables and $m'$ sets of $n$ anti-commuting variables and show that the multiplicity of an irreducible indexed by the partition $\lambda$ (a partition of $n$) is the number of multiset tableaux of shape $\lambda$ satisfying certain column and row strict conditions.  We also present a finite generating set for the ring of $S_n$ invariant polynomials of this ring. 


Author(s):  
Matt Clay ◽  
Dan Margalit

This chapter discusses the notion of space, first by explaining what it means for a group to be a group of symmetries of a geometric object. This is the idea of group action, and some examples are given. The chapter proceeds by defining, for any group G, the Cayley graph of G and shows that the symmetric group of of this graph is precisely the group G. It then introduces metric spaces, which formalize the notion of a geometric object, and highlights numerous metric spaces that groups can act on. It also demonstrates that groups themselves are metric spaces; in other words, groups themselves can be thought of as geometric objects. The chapter concludes by using these ideas to frame the motivating questions of geometric group theory. Exercises relevant to each idea are included.


10.37236/6970 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Brendon Rhoades ◽  
Andrew Timothy Wilson

Let $n,k,$ and $r$ be nonnegative integers and let $S_n$ be the symmetric group. We introduce a quotient $R_{n,k,r}$ of the polynomial ring $\mathbb{Q}[x_1, \dots, x_n]$ in $n$ variables which carries the structure of a graded $S_n$-module.  When $r \ge n$ or $k = 0$ the quotient $R_{n,k,r}$ reduces to the classical coinvariant algebra $R_n$ attached to the symmetric group. Just as algebraic properties of $R_n$ are controlled by combinatorial properties of permutations in $S_n$, the algebra of $R_{n,k,r}$ is controlled by the combinatorics of objects called tail positive words. We calculate the standard monomial basis of $R_{n,k,r}$ and its graded $S_n$-isomorphism type. We also view $R_{n,k,r}$ as a module over the 0-Hecke algebra $H_n(0)$, prove that $R_{n,k,r}$ is a projective 0-Hecke module, and calculate its quasisymmetric and nonsymmetric 0-Hecke characteristics. We conjecture a relationship between our quotient $R_{n,k,r}$ and the delta operators of the theory of Macdonald polynomials.


1976 ◽  
Vol 28 (6) ◽  
pp. 1269-1276
Author(s):  
John G. Stevens

Let Ω be a field and Γ a parameter. We designate the set of all polynomials homogeneous in (X) = (X1, … , Xn) with coefficients in Ω [Γ] by H Ω Γ[X] and write such polynomials as F, F(X), or F(X, Γ). The degree of a polynomial in H Ω Γ [X] shall mean the degree in (X). Let I = (F1 … , Fr) be a fixed ideal in H Ω Γ [X] generated by F1 … , Fr.


Sign in / Sign up

Export Citation Format

Share Document